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Preface

Welcome to the programming side of the General Mission Analysis Tool, GMAT! This document describes
the design of the GMAT system, starting from an overview of the requirements for the system and the
architecture built to meet these requirements, and proceeding through descriptions of the design for the
components that fit into this architecture.

The purpose of this document is to give the reader an understanding of the design goals and implementa-
tion of GMAT. It is written to prepare you to work with GMAT at a source code level. In this document we
present the rationale for GMAT’s architectural design based on the requirements for the system, and then
construct the architecture based on that rationale.

The architectural framework is presented taking a top-down approach. First we define a way to think
about GMAT’s structure in terms of high level functionality, grouped into logical packages. Then we examine
key elements of these packages, and explain how they interact to complete a few typical tasks. With a few
exceptions, we do not document the details of the classes and objects in the system. That task is left to the
GMAT API, generated using the Doxygen[doxygen| open source tool.

Intended Audience

This document is written primarily for people interested in working with GMAT’s source code, either to
enhance the system by adding new components, to debug existing features in a way consistent with GMAT’s
design, to gain insight into pieces of the system that they may want to use elsewhere, or to learn how GMAT
was assembled to help design a similar system. The primary audience for this document is the software
development community — programmers, system analysts, and software architects.

Analysts that are interested in understanding how GMAT performs its tasks can gain an understanding of
the system by reading the first few chapters of this document. If some element of GMAT is not behaving the
way you expect, you might also want to look up the description of that object in later chapters. In addition,
many of the details about how calculations are performed in GMAT are contained in the Mathematical
Specifications[MathSpec|. If you are more interested in understanding how to use GMAT as an analyst, you
might want to read the User’s Guide[UsersGuide] rather than this document.

Assumed Background

The GMAT design was developed using object-oriented technologies. The design is presented using Unified
Modeling Language (UML) diagrams, using a style similar to that presented in UML Distilled[fowler].
You can find a description of the use of UML diagrams as used in this document in Appendix [A] While you
don’t need to be an expert in either of these fields to understand the content presented here, you will benefit
from some preliminary reading at an introductory level.

The GMAT design leverages several industry standard design patterns. The patterns used are summarized
in Appendix [Bl If you are unfamiliar with the design pattern literature, you’d benefit from reading — or at
least skimming — some of the standard texts (see, for example, Design Patterns[GoF]).

xiii
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GMAT is written in C++. On the rare occasions that actual code is presented in this document, that
code isin C++. As you go deeper into the GMAT’s design, the underlying coding language will become more
important. Therefore, if you plan to work with the GMAT source code, you’ll need to have an understanding
of the C++ programming language.

In addition, the standard GMAT GUI is written using the wxWidgets[wx] GUI toolkit. If you plan to
work with GMAT’s GUI code, you’ll want to bo some preliminary exploration of wxWidgets. A good place
to start is the wxWidgets book[smart], which, while slightly out of date at this writing, does present a rather
complete description of wxWidgets.

Useful Preliminaries

This document describes the GMAT source code — sometimes at a very high level, but also at times at a
rather low level of detail. You’ll benefit from having a copy of the current source available for viewing at
times when the descriptions found here are not as clear as you’d like. You can retrieve the source code either
at the GMAT website (http://gmat.gsfc.nasa.gov/downloads/source.html) or from the download pages or
the code repository at SourceForge (http://sourceforge.net/projects/gmat).

This document does not describe the detailed design of every class in GMAT, in part because the resulting
document would be extremely large, but also because GMAT is an evolving system. New features are being
added to the program as the system grows, so the best view of the details of GMAT can be seen by examining
the current code base. If you want a structured view into these details, you should run the open source tool
Doxygen[doxygen| on the source code tree. Doxygen will create an extensive hyperlinked reference for the
GMAT code that you can browse using any HTML browser.
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Chapter 1

Introduction

Darrel J. Conway
Thinking Systems, Inc.

Early in 2002, Goddard Space Flight Center (GSFC) began to identify requirements for the flight dy-
namics software needed to fly upcoming missions that use formations of spacecraft to collect data. These
requirements ranged from low level modeling features to large scale interoperability requirements. In 2003
we began work on a system designed to meet these requirements; this system is GMAT.

The General Mission Analysis Tool (GMAT) is a general purpose flight dynamics modeling tool built on
open source principles. The GMAT code is written in C++, and uses modern C++ constructs extensively.
GMAT can be run through either a fully functional Graphical User Interface (GUI) or as a command
line program with minimal user feedback. The system is built and runs on Microsoft Windows, Linux,
and Macintosh OS X platforms. The GMAT GUI is written using wxWidgets, a cross platform library of
components that streamlines the development and extension of the user interface.

Flight dynamics modeling is performed in GMAT by building components that represent the players in
the analysis problem that is being modeled. These components interact through the sequential execution
of instructions, embodied in the GMAT Mission Sequence. A typical Mission Sequence will model the
trajectories of a set of spacecraft evolving over time, calculating relevant parameters during this propagation,
and maneuvering individual spacecraft to maintain a set of mission constraints as established by the mission
analyst.

All of the elements used in GMAT for mission analysis can be viewed in the GMAT GUI or through a
custom scripting language. Analysis problems modeled in GMAT are saved as script files, and these files can
be read into GMAT. When a script is read into the GMAT GUI, the corresponding user interface elements
are constructed in the GMAT GUL

The GMAT system was developed from the ground up to run in a platform agnostic environment. The
source code compiles on numerous different platforms, and is regularly exercised running on Windows, Linux,
and Macintosh computers by the development and analysis teams working on the project. The system can
be run using either a graphical user interface, written using the open source wxWidgets framework, or from
a text console.

The GMAT source code was written using open source tools. GSFC has released the code using the
NASA open source license.

1.1 The Tool

Figure [[1] shows a sample run using GMAT on Windows XP. GMAT can be run using either a custom
scripting language or components configured directly from the user interface. GMAT scripting is designed
to run either from within GMAT, or from inside of the MATLAB product from MathWorks.

3
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Figure 1.1: A Sample GMAT Run

1.2 Design Criteria

There are several high level requirements for GMAT that drove the design of the system. These requirements
can be summarized in five broad categories: MATLAB Accessibility, Extensibility, Formation Modeling,
Parallel Processing, and Open Source Availability. The system is designed to run on Macintosh, Windows,
and variants of Unix (including Linux) — through a recompilation of the source.

1.2.1 MATLAB Accessibility

MATLAB is a tool used at many facilities in the aerospace community to develop new algorithms and to
prototype approaches unique to new missions under consideration. MATLAB as a system is quite flexible,
but is rather slow for precision orbit modeling work. GMAT, by design, performs detailed orbit and attitude
modeling, providing an engine that can be called from MATLAB for tasks that present performance issues
when built in the MATLAB language.

1.2.2 User Extensibility

One prime driver for the development of GMAT was to provide a tool that allows users to try new components
and models in the system without rebuilding it from scratch. This capability is partially satisfied by the
MATLAB interface described above. Components of GMAT can also be added to the system by writing new
code that can be compiled into shared libraries and incorporated into the system at run time. All of the
operating systems GMAT supports provide native methods for this capability, and the system is designed
to make the addition of new components simple using these capabilities.
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1.2.3 Formation Modeling

The current tool set used to model formations treats a formation of spacecraft as individual spacecraft,
modeled independently and then compared by matching states at specific epochs, either on a small scale
(taking single steps for each and then comparing the states) or on a large scale (propagating ephemerides
for each spacecraft and then going back afterwards to compare states at specific epochs. GMAT provides
the ability to treat a collection of spacecraft as a single entity, making the modeling more streamlined and
providing the ability to handle formations and constellations as simple entities.

1.2.4 Parallel Processing Capabilities

Some satellite analysis tasks require the execution of many separate orbit propagations, including mission
tuning (aka targeting or optimizing) and other mission refinements, in order to adequately model the mission
scenarios under analysis. These tasks can take as many as several hundred separate runs, each consisting of
several minutes or more of run time on current hardware, in order to determine the results of the analysis
problem. GMAT is designed to enable the parallelization of these tasks across multiple processors, either
within the same computer or, eventually, across a network of computers. While the current implementation
does not leverage this capability, it is designed to make the transition to multiple processors and distributed
computing as simple as possible.

1.2.5 Open Source Availability

GMAT is available for external users in both executable and source code form, subject to the NASA Open
Source licensing agreement. This redistribution requirement drove design issues related to the selection of
external libraries and packages used by GMAT.

1.3 Design Approach

The categories described above drove the architecture of GMAT. The following paragraphs describe the
architectural elements used to address these requirements.

1.3.1 Modularity

GMAT is a complicated system. It is designed to be implemented using a “divide and conquer” approach
that uses simple components that combine to satisfy the needs of the system. This system modularity makes
the individual components simple, and also simplifies the addition of new components into the system. In
addition, each type of resource has a well defined set of interfaces, implemented through C++ base classes.
New components in each category are created by implementation of classes derived from these base classes,
building core methods to implement the new functionality — for example, forces used in the force model for
a spacecraft all support an interface, GetDerivatives(), that provides the acceleration data needed to model
the force. Users can add new components by implementing the desired behavior in these interfaces and then
registering these components in the GMAT factory subsystem.

1.3.2 Loose Coupling

The modularity of the components in GMAT are implemented to facilitate “plug and play” capability for the
components that allows them to be combined easily using a set of common interfaces. Components built in the
system have simple interfaces to be able to communicate with MATLAB and with one another. Dependencies
between the components are minimized. Circular dependencies between components minimized.
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1.3.3 Late Binding

GMAT is designed to support running of multiple instances of a mission simultaneously in order to satisfy
parallel processing requirements. This capability is built into the system by separating the configuration
of the components used in the mission from the objects used during execution. Configured objects are
copied into the running area (the “Sandbox”) and then connected together to execute the mission. The
connections between the components cannot be made until the objects are placed in the Sandbox because
the objects in the Sandbox are clones of the configured objects. This late binding makes parallelization
simple to implement when the system is ready for it — parallelization can be accomplished by running
multiple Sandboxes simultaneously.

1.3.4 Generic Access

GMAT components share a common base class that enforces a set of access methods that are used to
serialize the components, facilitating both file level read and write access to the components and simplifying
communications with MATLAB and other external tools. This capability is implemented using parameter
access methods that are themselves serialized, providing descriptors for each parameter. Connections between
components are specified at this level by establishing parameters that identify the connected pieces by name.
Data generated by the system is passed out of the Sandbox through a message interface, using “publish and
subscribe” design.

1.4 Document Structure and Notations

GMAT is written in ANSI C++. The system is object-oriented, makes extensive use of the standard template
library (STL), and is coded based on a style guide[shoan| so that the code conforms to a consistent set of
conventions. The source is configuration managed in a CVS repository hosted at GSFC.

This document provides a fairly in-depth introduction to the design of the software. Throughout this
document, the architecture of the system is described using C++ nomenclature. The design of the system
is illustrated using Unified Modeling Language (UML) diagrams to sketch the relationships and program
flow elements. While this document is extensive, it does not completely document all of the intricacies of
each GMAT class. These details can be found most accurately in the source code, which is available on
request under the NASA Open Source licensing agreement. The code includes comments written in a style
compatible with the Doxygen documentation system. When the source code is processed by Doxygen, the
output is a complete reference to the GMAT Application Programmer’s Interface (API).
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Chapter 3

System Architecture Overview

Darrel J. Conway
Thinking Systems, Inc.

The purpose of this chapter is to introduce the key architectural elements of GMAT, and to explain at a
high level how they interact to solve mission design problems. If you are trying to understand how GMAT
works, or if you are refreshing yourself in the basics of the GMAT architecture, this chapter is where you
should start. After reading this chapter, you should have a high level understanding of how the components
in GMAT interact to perform mission analysis.

The chapter is written so that as you read further, you will obtain a deeper the view into the system
architecture. We begin by identifying the key system components and grouping them according to the
functions they perform. These groupings are referred to as “Packages” and are used to provide a framework
for the discussion about how GMAT works.

After presenting the functional GMAT’s components, we present a high level view of how these com-
ponents interact and describe which components interact with each other. This description provides an
overview of how messages and data flow in the system. The next level of detail describes how the architec-
ture handles a simple application there a user open the system, creates a spacecraft, configures a mission
sequence, and runs the mission.

Later chapters build on these materials. The remainder of this document is organized to take the package
descriptions presented at the start of this chapter, and present the design of the elements of these packages.
Since the document is structured that way, we’ll begin this chapter by examining the logical packaging of
GMAT’s components.

3.1 The GMAT System Framework

The GMAT architecture can be described as a set of components grouped into functional packages! that
interact to model spacecraft missions. The system is built around four packages that cooperatively interact
to model spacecraft in orbit. Figure[3.Ilshows an overview of this package grouping. GMAT functionality can
be broken into Program Interfaces, the core system Engine, the Model used to simulate spacecraft and their
environment, and Utilities providing core programmatic functionality. The constituents of these packages
are described throughout this document; this chapter provides a framework for the more detailed discussions
that follow.

Each of these functional categories can be broken into smaller units. The next level of decomposition
is also shown in Figure Bl This next level of packaging — referred to as “subpackaging” in this document
— provides a finer grained view of the functions provided in each package. The next level of decomposition

INote that these divisions are functional, and not enforced by any physical packaging constraints like a namespace or shared
library boundaries.
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below the subpackages provides a view into the class structure of GMAT, as will be seen in the next few
paragraphs.

3.1.1 Package and Subpackage Descriptions

Figure presents the packages and subpackages in a slightly different format from that shown in the
last figure. The top level packages are represented by specific colors matching those in Figure BIP. The
package names are listed at the top of each column, with the subpackages shown indented one level from these
packages. One additional level is shown in this diagram, showing representative members of the subpackages.
The deepest level items in this figure are classes contained in the subpackages; for example, the Executive
subpackage in the Engine package contains the Moderator, Sandbox, and Publisher classes. These elements
will be used in the discussion of how the packages interact in the next few pages of this document.

Asis shown in these figures, three of these packages can be further broken into subpackages. The following
paragraphs present an overview of the packages and their subdivisions.

Program Interfaces All two-way communications between users and external programs and GMAT are
contained in the Program Interface package. This package can be broken into four subpackages:

o User Interfaces Users view GMAT through a user interface — usually through the GMAT Graphical

User Interface (GUI), but also potentially through a command line interface into GMAT called
the GMAT console application, or Console. These interfaces are contained in the UserInterface
subpackage.
GMAT’s GUI is coded using the wxWidgets cross-platform library[wx]. The GUI provides a rich
environment that provides access to all of the features of GMAT through either panels customized
for each component or through a text based script. Missions saved from the GUI are saved in the
script format, and scripts loaded into the GUI populate the GUI elements so that they can be
viewed on the customized interface panels.

The console version of GMAT can be used to run script files and generate text data with little
user interaction. The console application can run multiple scripts at once, or individual scripts
one at a time. This version of the system is currently used for testing purposes, in situations
where the overhead of the full graphical user interface is not needed.

e Interpreters The user interface components communicate with the core GMAT system through
an interface layer known as the Interpreter subpackage. This layer acts as the connection point
for both the scripting interface and the GUI into GMAT.

The Interpreter subpackage contains two specific interpreters: a Guilnterpreter, designed to pack-
age messages between the GUI and the GMAT engine, and the ScriptInterpreter, designed to
parse script files into messages for the engine, and to serialize components in the engine into
script form for the purposes of saving these objects to file.

The Interpreter subpackage is designed so that it can be extended to provide other means of
controlling the GMAT engine. All that is required for this extension is the development of a
new interpreter, and interfaces for this new component into the Moderator, a component of the
Executive subpackage in GMAT’s Engine package.

o Faxternal Interfaces GMAT provides an interface that can be used to communicate with external
programs®. These interfaces are packaged in the Externallnterfaces subpackage.

o Subscribers Users view the results of a mission run in GMAT through elements of the Subscriber
subpackage. Subscribers are used to generate views of spacecraft trajectories, plots of mission
parameters, and reports of mission data in file form.

2This color scheme will be used for the remainder of this chapter as well.
3At this writing, the only external interface incorporated into the core GMAT code base is an interface to the MathWorks’
product MATLAB[matlabl.
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The Engine The interfaces described above exist on top of a core simulation engine used to control the
model of flight dynamics problems in GMAT. This engine consists of the control and management
structures for the program. The elements of the model used to simulate the spacecraft mission are
introduced in the next package description. The Engine package consists of three subpackages:

e FErxecutive The Executive subpackage contains the central processing component for GMAT (called
the Moderator), a connection point used to capture and distribute the results of a mission run
(the Publisher), and the workspace used to run a mission (the Sandbox).

The Moderator acts as the central communications hub for the GMAT engine. It receives messages
from the program interfaces through the interpreters, and determines the actions that need to be
taken based on these messages. The Moderator sends messages to the other components of the
Engine to accomplish the requested tasks.

GMAT is designed to run missions inside of a component called the Sandbox. When a user
requests a mission run, the Moderator sets up the Sandbox with the elements configured for the
run, and then turns control over to the Sandbox to execute the mission.

The Publisher acts as the connection between data generated in the Sandbox and the views of
these data presented to the User. It receives data or instructional messages from the components
in the Sandbox, and passes those messages to the corresponding Subscribers.

e Configuration When GMAT builds a model, it starts by building components that will be con-
nected together based on a sequence of instructions. Each component is an instance of a GMAT
clags; as they are built, these components are stored in a local repository of objects. The repos-
itory holding model components is known as the configuration. The Configuration subpackage
consists of this repository and an interface used to access it, called the ConfigurationManager.

The components stored in the configuration are all derived from a base class named GmatBase,
described in Chapter In GMAT, every object that a user creates and uses to simulate a
spacecraft mission is derived from this base class. The configuration is maintained as a collection of
pointers to GmatBase objects. The ConfigurationManager works with this collection to maintain
the configuration repository.

e Factory The model elements stored in the configuration are created on request from the users. The
subpackage responsible for processing requests for new model elements is the Factory subpackage.
It consists of an interface into the subpackage — the FactoryManager — and a collection of factory
classes used to create specific types of model elements.

Each factory in GMAT creates objects based on the type requested. For example, Spacecraft
or Formation objects are created through a call is the corresponding type of object into the
SpaceObjectFactory. Similarly, if a user needs a Prince-Dormand 7(8) integrator, a call is made
to the PropagatorFactory for that type of integrator. The factory creates the object through a
call to the class’s constructor, and returns the resulting object pointer.

The Factory subpackage is constructed this way to facilitate extensibility. Users can add user
generated classes by creating these classes and a Factory to instantiate them. That factory can
then be registered with GMAT’’s FactoryManager, and users will be able to access their specialized
classes in GMAT without modifying the configured GMAT code base. Eventually, users will be
able to load their objects through shared libraries (aka dlls in the Windows world) at run time.

The FactoryManager registration process takes a factory and asks it what type of objects it
can create, and sends the corresponding requests to the correct factory. Details of the factories
themselves can be found in Chapter [6l Extensibility is discussed in Chapter

The Model The Engine package, described above, provides the programmatic framework necessary for
building and running a simulation in GMAT. The objects that are used to model the elements of the
simulation are contained in the Model package. All of the elements of the Model package are derived
from a common base class, GmatBase, described in Chapter
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When a user configures GMAT to simulate a spacecraft mission, the user is configuring objects in the
Model package. In other words, the Model package contains all of the components that are available to
a user when setting up a mission in GMAT. The model elements can be broken into four subpackages:

e FEnuvironment The environment subpackage provides all of the background environmental data used
in GMAT to model the solar system, along with the components needed to perform conversions
that require these elements.

e Resources All of the model elements that do not require some form of sequential ordering in
GMAT are called Resources. These are the model elements that appear in the Resource tree in
the GUI — excluding the Solar System elements — and they are the elements that are stored in
the configuration subpackage, described above.

e Commands Commands are the elements of the model that describe how the model should evolve
over time. Since commands are sequential, they are stored separately, and in sequential order,
in the Command subpackage. The sequential set of commands in GMAT is called the Mission
Control Sequence.

The Mission Control Sequence is a list of commands. Commands that allow branching manage
their branches through “child” lists. These branch commands can be nested as deep as is required
to meet the needs of the model.

e Parameters Parameters are values or data containers (e.g. variables or arrays) that exist external
to other objects in the GMAT model. These objects are used to perform calculations of data
useful for analysis purposes.

Utilities The Utility package contains classes that are useful for implementing higher level GMAT functions.
These core classes provide basic array computations, core solar system independent calculations, and
other useful low level computations that facilitate programming in the GMAT system.

3.1.2 Package Component Interactions

The preceding section provides a static view into the components of GMAT. In this section, a high level view
of the interactions between the elements of these packages will be described. Figure Bl shows the static
package view of GMAT. Each top level package is color coded so that the system components shown in the
interaction diagram, Figure B3l can be identified with their containing package. The legend on this figure
identifies the package color scheme.

Users interact with GMAT through either a Graphical User Interface (GUI) written using the cross-
platform GUT library wxWidgets, or through a console-based application designed to run scripts without
displaying graphical output. These interfaces communicate with the GMAT engine through interpreter
singletons*. The GUI application interacts with the engine through both the Script and GUI Interpreters,
while the console application interacts through the script interpreter exclusively. These interpreters are
designed to mediate two-way communications between the GMAT engine and users. The GUI and console
applications drive the GMAT engine through these interpreters.

The Interpreters in turn communicate with GMAT’s Moderator singleton. The Moderator is the central
control object in the GMAT engine. It manages all program level communications and information flow
while the program is running. It receives messages from the interpreters, processes those messages, and
instructs other components of the engine to take actions in response to the messages. The messages sent by
the interpreters fall into several distinct groups:

4The GMAT engine is run through a set of singleton class instances. The singleton design pattern used for these instances is
introduced in Appendix The important thing to know about singletons for this discussion is that there is only one instance
of any singleton class; hence a running GMAT executable has one and only one ScriptInterpreter, and Moderator, and at most
one GUIInterpreter. Other singletons will be introduced during this discussion as well, when the factories and configuration
are discussed.
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e Object Creation messages are used to request the creation of resources stored in the configuration
database or the creation of commands stored in the Mission Control Sequence.

e Object Retrieval messages are used to access created objects, so they can be modified by users or
stored to file.

e Run messages prepare the Sandbox for a run of the Mission Control Sequence, and then launch
execution of the Mission Control Sequence.

e Polling messages are used to control an executing Mission Control Sequence, and are used to coordinate
external communications (for example, the startup process for MATLAB) and user actions taken during
the run.

The message and information flow in the Engine are shown in Figure B3] with double headed arrows. The
green arrows show the central message and information flow in the engine, while the blue arrows show
information flow that occurs while a mission control sequence is executing. These messages are described
briefly here, and more completely through examples later in this chapter.

The Moderator responds to requests for new resources or commands by requesting a new object from the
FactoryManager. The FactoryManager determines which Factory class can supply the requested object, and
sends a “create” request to that factory. The Factory builds the requested object, and sends the pointer to
the new object to the FactoryManager, which in turn sends the pointer to the Moderator. The Moderator
sends the new object’s pointer to one of two locations, depending on the type of object created. If the object
is a Resource, the object pointer is passed to the ConfigurationManager. The ConfigurationManager adds
the resource to the database of configured objects. If the requested object is a command, it is added to the
Mission Control Sequence. The Moderator then returns the pointer to the interpreter that requested the
new object.

Object retrieval is used to retrieve the pointer to an object that was previously created. The Moderator
receives the message asking for the object. If the object is a configured resource, it calls the Configuration-
Manager and asks for the resource by name. Otherwise, it traverses the Mission Control Sequence until it
finds the requested command, and returns the pointer to that command.

Run messages are used to transfer the resources and Mission Control Sequence into the Sandbox and
start a run of the mission. When the Moderator is instructed to run a Mission Control Sequence, it starts by
loading the configured components into the Sandbox. The Moderator requests objects from the Configura-
tionManager, by type, and passes those objects to the Sandbox. The Sandbox receives the object pointers,
and clones each object into a local resource database. These local clones are the objects that interact with
the commands in the Mission Control Sequence to run a mission. The Moderator then passes the Mission
Control Sequence to the Sandbox so that the Sandbox has the list of commands that need to be executed
to run the mission. Next Moderator tells the Sandbox to initialize its components. The Sandbox initializes
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each of the local components, and establishes any necessary connections between components in response to
this message. Finally, the Moderator instructs the Sandbox to execute the Mission Control Sequence. The
Sandbox starts with the first command in the sequence, and runs the commands, in order, until the last
command has executed or the run is terminated by either a user generated interrupt or an error encountered
during the run.

Polling messages are used to process messages between the Moderator and the Sandbox during a run.
Typical messages processed during polling are user requests to pause or terminate the run, or to open a
connection to an external process (including the startup of that process).

The descriptions provided here for these message types may be a bit confusing at first. The following
section provides representative cases of the message passing and object interactions in GMAT when a user
performs several common interactions.

3.2 GMAT Workflow Overview

When users run GMAT, they follow a work flow like that shown in Figure 34l Users start the program,
configure resources, plan their mission, save the configuration, build the mission if working from a script
file, and run the mission. The following sections describe the top level actions taken by GMAT when a user
initiates each of these actions.

3.2.1 The GMAT Startup Process

GMAT
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Figure 3.5: The Startup Process

The startup process for GMAT, shown in Figure [35 launches the executable program and prepares
the engine for use. Most of the work performed during startup is performed by the Moderator. When the
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application launches, the first action taken is the creation of the Moderator singleton, made by calling the
static Instance() method on the Moderator class. This freshly created Moderator is then initialized by the
application through a call to the Initialize method.

The procedure followed in Initialize() is shown in the large green structured flow box in the figure. The
Moderator reads the GMAT startup file, setting linkages to the default files needed to model and display
running missions. The startup file resides in the same folder as the GMAT application, and contains path
and file information for planetary ephemerides, potential models, graphical images used to provide texture
maps for bodies displayed in the GUI, atmospheric model files, and default output paths for log files and
other GMAT generated outputs.

Upon successful read of the startup file, the Moderator starts creating and connecting the main compo-
nents of the engine. It begins by creating the components used for building model elements. The Facto-
ryManager and ConfigurationManager are created first. Next the Moderator creates each of the internally
configured factories, one at a time, and passes these instances into the FactoryManager. This process is
called “registering” the Factories in other parts of this document. Upon completion of Factory registration,
the Moderator creates instances of the ScriptInterpreter and Guilnterpreter singletons and the Publisher sin-
gleton. This completes the configuration of the core engine elements, but does not complete the Moderator
initialization process, because GMAT starts with several default model elements.

The Moderator creates a default Solar System model, populated with a standard set of solar system
members. Next it creates three default coordinate systems that always exist in GMAT configurations:
the Earth-Centered Mean of J2000 Earth Equator system, the Earth-Centered Mean of J2000 Ecliptic
system, and the Earth-Centered Earth body-fixed system. Next the Moderator sets the pointers needed to
interconnect these default resources. Finally, the Moderator creates a default mission, and upon success,
returns control to the GMAT application.

The Application retrieves the pointer for the Guilnterpreter, and sets this pointer for later use in the GUI.
It then displays the GMAT splash screen, and then finally creates and displays the main GMAT Window.
At this point, the GMAT GUI is configured and ready for use building models and running missions.

3.2.2 Configuring Resources

Figure shows the top level set of actions taken by a user when configuring a typical resource — in this
case, a Spacecraft object — from the GUI. The user starts by using a right click on the Spacecraft folder
(or control-click on the Mac) in the resource tree on the left side of the main GMAT window. This action
opens a context menu; the user selects “Add Spacecraft” from this menu, and a new spacecraft resource
appears in the resource tree. This action is represented by the box labeled “Create the Spacecraft” in the
figure. The user may also elect to change the name of the new Spacecraft. This action is taken with a right
click (control-click on the Mac) on the new resource in the resource tree, and selecting “Rename” from the
resulting context menu.

Once a resource has been created, the user can edit the properties of the resource. From the GUI, this
action is performed with a double click on the resource. The double click opens a new panel tailored to
the type of resource that is selected; for a Spacecraft, the panel shown in Figure [3.7] opens. The second
block in Figure 3.0l labeled “Set Spacecraft Properties”, represents the actions taken in GMAT when the
user performs this selection, and when the user makes changes on the resulting panel.

Changes made in a GUI panel like the one shown here are not automatically made on the underlying
objects in GMAT. Changes made on the panel are fed back to the internal objects when the user selects
either the “Ok” or “Apply” button on the bottom of the panel. This updating of the resource is represented
by the “Update Configuration” block in Figure B.6l

Each of these blocks can be further decomposed into the internal actions performed in GMAT when
the user makes the selections described here. The following paragraphs describe in some detail how GMAT
reacts to each of these user actions.
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Figure 3.6: Configuration Example: Spacecraft

Creating the Spacecraft

Figure shows an example of the process followed in GMAT when a new resource is created from the
GUL The user selected “Add Spacecraft” from the option menu on the Spacecraft node of the resource tree
(accessed with a right click — control-click on the Mac — on the node). This selection triggered the chain of
events shown in the sequence diagram in the figure®. The sequence starts with a CreateObject() call from
the GUI to the interface into the GMAT engine. The interface between the GUI and the GMAT engine is a
singleton instance® of the Guilnterpreter class, and is shown in green in the figure.

The Guilnterpreter singleton receives the call to create an object of type Spacecraft. It makes a call,
in turn, into the singleton responsible for running the GMAT engine. This singleton is an instance of the
Moderator class”. The call into the Moderator is made in step 1 of the diagram; the call is made through
the CreateSpacecraft() method of the Moderator.

User configured objects in GMAT are always created through calls into a subsystem referred to collectively
as the Factory subsystem. Factories are responsible for creating these objects. The factory subsystem is
managed through a singleton class, the FactoryManager. The Moderator accesses the factories through
this singleton. In step 2 of the figure, the Moderator makes a call to the CreateSpacecraft() method on
the FactoryManager. The FactoryManager finds the Factory responsible for creating objects of the type
requested — in this case, a Spacecraft object — and calls that factory in turn. Spacecraft are created in GMAT’s
SpaceObjectFactory, so the FactoryManager calls the CreateSpacecraft() method on the SpaceObjectFactory,
as is shown in step 3.

The SpaceObjectFactory creates an instance of the Spacecraft class by calling the class’s constructor, as

5For an introduction to the UML diagram notation used throughout this document, see Appendix [A]

6Singletons, and other design patterns used in GMAT, are introduced on Appendix [Bl

"For the purposes of this discussion, the singleton instances will be referred to by their class name for the remainder of this
discussion.
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Figure 3.7: The Spacecraft Configuration Panel

shown in step 4. The constructed object is given a name, and then returned through the FactoryManager
to the Moderator. The Moderator receives the new object, and adds it to the database of configured objects
in GMAT.

All configured GMAT objects are managed by a singleton instance of the ConfigurationManager class.
The ConfigurationManager is used to store and retrieve objects during configuration of the model. The
Moderator adds created components to the configuration by calling Add() methods on the Configuration-
Manager. For this example, the new Spacecraft is added to the configuration through the call shown in step
5.

Once the steps described above have been completed successfully, the Moderator returns control to the
Guilnterpreter, which in turn informs the GUI that a new object, of type Spacecraft, has been configured.
The GUI adds this object to the resource tree, and returns to an idle state, awaiting new instructions from
the user.

Setting Spacecraft Properties

The Spacecraft that was created above has default settings for all of its properties. Users will typically reset
these properties to match the needs of their mission. The process followed for making these changes from
the GUT is shown in Figure 3.0

As was discussed in the introduction to this section, Spacecraft properties are set on the GUI panel
shown in Figure B77 Users can open this panel at any point in the model setup process. Because of the free
flow in the configuration process, the Spacecraft pointer may not be accessible when the user elects to open
the configuration panel with a double click on the Spacecraft’s name on GMAT’s resource tree. Therefore,
the first action taken when the panel is opened is a call from the panel to the Guilnterpreter to retrieve
the configured Spacecraft with the name as specified on the Resource tree. The Guilnterpreter passes this
request to the Moderator. The Moderator, in turn, asks the ConfigurationManager for the object with the
specified name. The ConfigurationManager returns that object to the Moderator, which passes it to the
Guilnterpreter. The Guilnterpreter returns the object (by pointer) to the Spacecraft Panel.

The Spacecraft Panel creates a temporary clone of the configured spacecraft so that it has an object
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Figure 3.8: Configuration Example: Creating the Spacecraft

that can be used for intermediate property manipulations®. This clone is set on the Spacecraft Panel’s

subpanels, accessed through a tabbed interface shown in the snapshot of the panel. Each subpanel accesses
the properties corresponding to the fields on the subpanel, and sets its data accordingly. The Spacecraft
Panel is then displayed to the user. The user then makes any changes wanted for the model that is being
configured.

Saving the Spacecraft

The final step in the spacecraft configuration process is saving the updated data into the configuration. That
process is shown in Figure [3.10]

The Spacecraft Panel has several tabbed subpanels. The SpacecraftPanel begins the save process by
calling each of these subpanels in turn, setting the corresponding Spacecraft data one subpanel at a time
on the locally cloned Spacecraft. Once all of the subpanels have synchronized their data with the clone, the
copy constructor of the configured Spacecraft is called with the cloned Spacecraft as the input argument.
This action updates the configured Spacecraft, completing the save action.

There are two buttons on the Spacecraft Panel that can be used to perform the save action. The button
labeled “Apply” saves the updated data to the configured object and leaves the Spacecraft Panel open for
further user manipulation. The “OK” button saves the data and closes the panel. The latter action destroys
the instance of the panel. Since the panel is going out of scope, the cloned Spacecraft must also be deleted,
as is shown in the figure.

8The Spacecraft is unique in this respect; other objects configured in the GMAT GUT are manipulated directly, rather than
through a clone. The Spacecraft is in many respects a composite object; this added complexity makes the intermediate clone a
useful construct.
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Figure 3.9: Configuration Example: Setting Spacecraft Properties

3.2.3 Configuring Commands

The previous paragraphs describe the interactions between core GMAT components and the internal message
passing that occurs when a component of a GMAT Model is configured for use. The following paragraphs
describe the analogous configuration for the commands in the Mission Control Sequence.

The Mission Control Sequence is shown in the GMAT GUI on the tab labeled “Mission,” shown for
a modified Hohmann transfer problem® in Figure BIIl The sequence is shown as a hierarchical tree of
commands. Each level of the hierarchy is a separate list of commands. The top level list is the main control
sequence. Commands that branch from this list are shown indented one level from this sequence. Commands
branching off of these commands are indented an additional level'®. This process continues until all of the
commands in the sequence are incorporated into the tree structure.

The Mission Control Sequence shown in the figure consists of seventeen commands, grouped as seven
commands in the main (i.e. top level) sequence, five additional commands branched off of this sequence to
perform one set of maneuver targeting, and an additional five commands to perform targeting for a second
maneuver. The main sequence of commands shown here is the sequence Propagate — Propagate — Target
— Propagate — Propagate — Target — Propagate. The Target commands are used to tune the maneuvers at

9The modification made here is along the transfer trajectory from the initial orbit to the final orbit. The spacecraft in this
example is propagated through one and a half orbits on the transfer trajectory, rather than the typical half orbit needed for
the problem.

10Tn some cases sequences of similar commands are also indented to simplify the display of the Mission Control Sequence.
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Figure 3.10: Configuration Example: Saving the Spacecraft

each end of the transfer orbit by applying the command sequence Vary — Maneuver — Propagate — Achieve —
EndTarget. The inner workings of these commands is beyond the scope of this chapter; the important thing
to observe at this point is the sequencing of the commands, and the presentation of this sequencing to the
user by way of GMAT’s GUIL.

The tree shown in the GUI is populated by traversing the linked list of commands comprising the Mission
Control Sequence. Each node of the Mission Tree is an instance of the class MissionTreeltemData. This
class includes a pointer to the corresponding GmatCommand object in the Mission Control Sequence. When
GMAT needs to build or refresh the Mission Tree, it accesses the first node in the Mission Control Sequence
and creates a corresponding MissionTreeltemData instance. That instance is passed the pointer to the
GmatCommand, and uses that command pointer to configure its properties in the tree. GMAT then asks
for the next node in the sequence, and repeats this operation until the tree is fully populated.

Some GmatCommands are derived from a subclass named BranchCommand. These commands manage
child linked lists, like the ones shown for the target commands in the figure. When the GUI encounters a
BranchCommand derivative, it indents the nodes displayed on the Mission Tree to indicate this nested level
for the child sequence of the branch command. All of the commands that allow this type of nesting are
terminated with a corresponding “End” command — for this example, the Target command terminates the
targeting child sequence when it encounters an EndTarget command.

Users interact with the Mission Control Sequence either through GMAT’s scripting interface, or through
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Figure 3.11: The Mission Tree in GMAT’s GUIL

manipulations made in the GUI. Manipulations made while scripting are pretty straightforward; they consist
of editing a script file of commands and then instructing GMAT to parse this script. This process will be

described later. Figure [3.12] shows the steps a user takes when adding a command to the Mission Control
Sequence from the GUIL
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Figure 3.12: Configuration Example: A Mission Control Sequence Command

The Mission Control Sequence is a doubly linked list of objects that describes the sequence of actions that
GMAT will run when executing a mission. Each node in the linked list is an object derived from the command
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base class, GmatCommand, as is described in Chapter Since GmatCommand objects are doubly linked
in the list, each command has a pointer to its predecessor and to the next command in the list. When a
user decides to add a command to the Mission Control Sequence, a node in the Mission tree is selected and
right clicked (or control-clicked on the Macintosh). This action opens a context menu with “Insert Before”
and “Insert After” submenus as options. The “Before” and “After” selections here refer to the location of the
new command. The user selects the desired command type from the submenu, and the requested command
is added to the Mission Control Sequence in the specified location. This set of actions corresponds to the
first block in the activity diagram, labeled “Create Command in Mission Control Sequence.”

Most of the commands in GMAT require additional settings to operate as the user intends — for example,
Propagate commands require the identity of the propagator and spacecraft that should be used during
propagation. The second block in the figure, “Edit Command Properties,” is launched when the user double
clicks on a command. This action opens a command configuration panel designed to help the user configure
the selected command. The user edits the command’s properties, and then saves the updates back to the
command object by pressing either the “Apply” or “OK” button on the panel. This action is performed in
the “Save Updates” block in the figure, and is the final step a user takes when configuring a command.

Each of these high level actions can be broken into a sequence of steps performed between the core
elements of GMAT, as is described in the following paragraphs, which describe the interactions followed to
add a Maneuver command to the Mission Control Sequence.

Creating a Maneuver Command

Figure B.13] shows the process followed when a Maneuver command is created and inserted following an
existing command from the GMAT GUI. The process starts when the user selects a command on the mission
tree, right clicks it, and chooses the “Insert After” option from the resulting context menu. The resulting
submenu contains a list of available commands; the following actions occur when the user selects “Maneuver”
from this list.
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Maneuver command creation starts when the MissionTree!! object sends a request to the Guilnterpreter
for a new Maneuver command instance. The Guilnterpreter sends the request to the Moderator, which sends
the request to the FactoryManager. The FactoryManager finds the factory that creates Maneuver commands,
and asks that factory for an instance of the Maneuver command. The resulting instance is returned from
the factory, through the FactoryManager, to the Moderator. The Moderator sets some default data on the
command, and then returns the command pointer to the Guilnterpreter. The Guilnterpreter passes the
command pointer to the MissionTree.

Each node in the MissionTree includes a data member pointing to the corresponding command in the
Mission Control Sequence. This structure simplifies the interactions between the GUI and the engine when
a user makes changes to the Mission Control Sequence. Since the MissionTree already has a pointer to the
command preceding the new Maneuver command, it has all of the information needed to request that the new
command be added to the Mission Control Sequence. The new Maneuver command is added to the Mission
Control Sequence from the MissionTree. The MissionTree passes two pointers through the Guilnterpreter
to the Moderator: the first pointer identifies the command selected as the command preceding the new one,
and second pointer is the address of the new Maneuver command. The Moderator passes these two pointers
to the head of the Mission Control Sequence using the “Insert” method. This method searches the linked
list recursively until it finds the node identified as the previous command node, and adds the new command
immediately after that node in the list, resetting the linked list pointers as needed. This completes the
process of adding a command to the Mission Control Sequence.

Configuring and Saving the Maneuver Command

When a new command is added to the Mission Control Sequence, it is incorporated into the sequence with
default settings selected by the Moderator. Most of the time, the user will want to edit these settings to
match the requirements of the mission being modeled. Command configuration is performed using custom
panels designed to display the properties users can set for each command. Figure 314 shows the panel that
opens when a user double clicks a maneuver command — like the one created in the example described above
— in the mission tree.

;. Maneuver1
Burn |Burn1 ﬂ
Spacecraft |TheSat ﬂ
Apply | Cancel | Shiow Script | Command Surmimary |

Figure 3.14: The Maneuver Command Configuration Panel

The sequence diagram in Figure B.13] shows the top level messages that are passed when the Maneuver
command is configured using this panel. This view into the command configuration includes a bit more
detail about the GUI messages than was shown in the Spacecraft configuration presented previously.

The configuration process starts when the user double clicks on the command in the mission tree. The
double click action sends a message to the MissionTree requesting the configuration panel for the selected
node in the tree. The MissionTree finds the item data, and sends that data to the main GMAT window,

HHere, and throughout this document, specific instances of singleton classes are referred to by the class name — “MissionTree”
in this case. When the class or user experience of the instance is discussed, it will be referred to less formally — “mission tree”,
for example. So as an example of this style, we might discuss the user selecting an object on the mission tree in the GUI, which
causes the MissionTree to perform some action.
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Figure 3.15: Command Configuration Example: Configuring the Maneuver Command

called the GmatMainFrame, asking for a new child window configured to edit the properties of the command
contained in the item data. The GmatMainFrame creates the child window and displays it for the user.

More concretely, if the user double clicks on the Maneuver command created in the preceding section,
the tree item data for that maneuver command is passed from the MissionTree to the GmatMainFrame.
The configuration window that should result from this action for display in the GUI needs to contain the
panel designed to match the underlying object that is being configured — in this case, a Maneuver command.
The GmatMainFrame uses the tree item data passed to it to determine the type of panel needed by the
child window during its creation. For this example, the GmatMainFrame determines that the panel that is
needed should be a ManeuverPanel because the tree item data includes a pointer to a Maneuver command.
Accordingly, the GmatMainFrame creates an instance of the ManeuverPanel class, and passes that panel to
the child window. The child window receives the panel and places it into the corresponding container in the
window.

Finally, the child window uses the command pointer in the tree item data to access the command and
determine the current values of its internal properties. These data are collected from the command and
passed to the corresponding GUI components so that the user can see the current settings. Once these data
fields have been populated, the child window is displayed on the GUI, giving the GUI a new window like
that shown in Figure figure:ManeuverConfigPanel. This completes the top portion of the sequence shown in
Figure 3.15]

Once the panel is shown on the GUI, the user makes changes to the settings for the command on the
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new panel. When the settings match the needs of the mission, the user clicks on either the “OK” or “Apply”
button. This action makes the ManeuverPanel update the Maneuver command with the new settings. If the
user pressed the OK button, the child window also passes a message to GMAT indicating that the user is
finished with the window. When that message is processed, the child window is closed in the GUIL

3.2.4 Model and Mission Persistence: Script Files

GMAT saves configuration data in files referred to as script files. The details of the script file parsing can
be found in Chapter The following paragraphs provide an overview of these processes.

The GMAT script files can be thought of as a serialized text view of the configured objects and Mission
Control Sequence constructed by the user to model spacecraft. GMAT provides a subsystem, controlled by
the ScriptInterpreter, that manages reading and writing of these files. All of these script files are ASCII
based files, so they can be edited directly by users.

T I A i el
2 |/ Configure Resources
I A e i

4+ |Create Spacecraft satl
s |satl.SMA = 10000.0

6 |satl.ECC = 0.2b

7 |satl.INC = 78.5

s |satl.RAAN = 45

10 |Create ForcelModel fm

11 [fm.PrimaryBodies = {Earth}

12 |fm.PointMasses = {Luna, Sun}
13
14 |Create Propagator prop
15 |prop.FM = fm

16
17 |Create XYPlot posvel

18 |posvel.IndVar = satl.X
19 |[posvel.Add = satl.VX

20 |posvel.Add = satl.VY

21 |posvel.Add = satl.VZ

22

28 | 4 e mm e mm e e e e e
20 | The Mission Control Sequence

R I A e
26 |While satl.ElapsedDays < 7

27 Propagate prop(satl)

28 | EndWhile

Listing 3.1: A Basic GMAT Script File

Listing B.1] shows a simple script that propagates a spacecraft for approximately 7 days, plotting the
Cartesian components of the velocity against the spacecraft’s X coordinate value. Details of all of these
settings can be found in the User’s Guide[UsersGuide]. This script just serves as an example for the discussion
that follows.

All objects that are created as configured resources from the GUI are stored in the script files using
the keyword “Create”. In the script shown here, there are four resources: a Spacecraft named “satl”; a
ForceModel named “fm”, a Propagator (actually an instance of the PropSetup class) named “prop”, and an
XYPlot Subscriber named “posvel”. Each of these resources is used when running the mission.
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In GMAT, each resource can have one or more data members that users can set. These resource properties
are initialized to default settings. Users can override the values of these properties. In the GUI, this action
is performed by editing data presented on the panels for the resources. Properties are changed in the script
file by assigning new values to the properties by name; for example, in the sample script, the Spacecraft’s
semimajor axis is changed to 10000.0 km on the fifth line of script:

satl.SMA = 10000.0

The script shown here is a script as it might be entered by a user. Only the lines that override default
property values are shown, and the lines are written as simply as possible. The full set of object properties
can be examined by writing this object to a script file. When a Spacecraft — or any other resource — is saved,
all of the resource properties are written. In addition, the keyword “GMAT” is written to the file, and the
full precision data for the numerical properties are written as well. The Spacecraft configured in the script
file above is written to file as shown in Listing

1 |Create Spacecraft satl;

2 |GMAT satl.DateFormat = TAIModJulian;

3 |GMAT satl.Epoch = 21545.000000000;

1 |GMAT satl.CoordinateSystem = EarthMJ2000Eq;
5 | GMAT satl.DisplayStateType = Keplerian;
6 |GMAT satl.SMA = 9999.999999999998;

» | GMAT satl.ECC 0.2499999999999999;

s |GMAT satl.INC 78.5;

o |GMAT satl.RAAN = 45;

10 | GMAT satl.AOP = 7.349999999999972;

11 | GMAT satl.TA = 0.9999999999999002;

12 | GMAT satl.DryMass = 850;

13 | GMAT satl1.Cd = 2.2;

14 | GMAT satl1.Cr = 1.8;

15 | GMAT satl.DragArea = 15;

16 | GMAT satl.SRPArea = 1;

Listing 3.2: Script Listing for a Spacecraft

GMAT generates the scripting for resources and commands using a method, GetGeneratingString(), which
is provided in the GmatBase class. This class provides the infrastructure needed to read and write object
properties through a consistent set of interfaces. The GetGeneratingString() method uses these interfaces
when writing most user objects and commands to script. Derived classes can override the method as needed to
write out class specific information. When GMAT saves a model to a script file, it tells the ScriptInterpreter
to write a script file with a given name. The ScriptInterpreter systematically calls GetGeneratingString()
on each object in the configuration and sends the resulting serialized form of each object to the script file.
Once all of the objects in the configuration have been saved, GMAT takes the first command in the Mission
Control Sequence and calls its GetGeneratingString() method, writing the resulting text to the script file.
It traverses the command list, writing each command in sequential order.

Script reading inverts this process. When a user tells GMAT to read a script, the name of the script file
is passed to the ScriptInterpreter. The ScriptInterpreter then reads the file, one logical block!'? at a time,
and constructs and configures the scripted objects following a procedure similar to that described above for
actions taken from the GUI.

Details of script processing can be found in Chapter

12 A “ogical block” of script is one or more lines of text sufficiently detailed to describe a single action taken in GMAT.
Examples include creation of a resource, setting of a single parameter on a resource, or adding a command to the Mission
Control Sequence.
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3.2.5 Running a Mission

Once a user has configured a model in GMAT, the model is ready to be run. The configuration has been
populated with all of the resources needed for the run, and the resources have been configured to match the
needs of the analyst. The Mission Control Sequence has been entered and configured to meet the needs of
the mission. All that remains is the actual running of the model encoded in these elements.

Figure shows the sequence followed when a mission is executed in GMAT. The figure shows the
sequence as initiated in the GUI. The user chooses to run the mission by pressing the “Run” button on
GMAT’s toolbar. This action sends a RunMission message to the Guilnterpreter, which then calls the
Moderator’s RunMission() method (Step 1 in the figure).

The Moderator begins by clearing any stale data out of the Sandbox by calling the Sandbox’s Clear()
method (Step 2). This action removes any local copies of objects in the Sandbox that may still exist from a
previous run. Once the Sandbox has been cleared, the Moderator begins passing resources into the Sandbox.

The Moderator passes the current Solar System into the Sandbox, and then begins making calls to
ConfigurationManager to get the current set of resources used in the model (Step 3). The Moderator passes
these resources into the Sandbox (Step 4) by type, starting with coordinate systems, and proceeding until
all of the resources have been passed into the Sandbox. The Sandbox receives each resource as it is passed in
and makes a copy of that resource by calling its Clone() method (Steps 5 and 6). The Sandbox stores these
local clones by name in its local object map. The local object map contains the objects that are manipulated
during a run; the configured objects are not used when running the mission.

After the configured objects have been passed into the Sandbox, the Moderator sends the head node of
the Mission Control Sequence to the Sandbox'3 (Step 7). This sets the Sandbox’s internal sequence pointer
to the first command in the Mission Control Sequence (Step 8), completing steps needed to begin work in
the Sandbox.

The Moderator has completed the bulk of its work for the run at this point. The next action taken is
a call from the Moderator to the Sandbox, instructing it to initialize itself (Step 9). When the Sandbox
receives this instruction, it begins initializing the local objects. Each object is queried for a list of referenced
objects that need to be set, and the Sandbox finds these objects in the local object store and sets each
one on the requesting object (Step 10, performed iteratively through all of the objects). After the object
initialization, the Sandbox walks through the Mission Control Sequence node by node, passing each command
a pointer to the local object map and then calling the Command’s Initialize method, giving each command the
opportunity to set up data structures needed to execute the Mission Control Sequence (Step 11, performed
iteratively through the Mission Control Sequence). If initialization fails at any point during this process, the
Sandbox halts the initialization process and reports the error to the Moderator.

Once initialization is complete, the Sandbox reports successful initialization to the Moderator. At this
point the Moderator sends an Execute() message to the Sandbox (Step 12). The Sandbox responds by calling
the Execute() method on the first command in the Mission Control Sequence (Step 13). The command
executes this method, manipulating objects in the local object map (Step 14) and sending data to GMAT’s
Publisher (Step 15) based on the design of each command. When data is passed to the Publisher, it passes
the data on to each Subscriber (Step 16), producing output that the user can view to monitor the mission
as it executes, or to process after the mission has finished running.

When the first command completes execution, the Sandbox asks for the next node to execute in the
Mission Control Sequence, and repeats this process on the second node. The process continues, calling node
after node in the Mission Control Sequence until the final command has been executed.

13Commands are not cloned into the Sandbox at this writing. A future build of GMAT may require cloning of commands
as well as resources, so that the system can support multiple Sandboxes simultaneously. The system is designed to allow this
extensibility when needed.
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fhome/djc/TS_Code/gmat/bin/MyTe sicScript.script - General Mi ysis Tool (GMAT)

File Edit Tools Help
D= d Bir@B & »u 8 B ZA T

Resources | Mission | Output posvel

=—B® Spacecraft = T T T sat1.VX

dHardware satlvy
satlVZ

satl

——[1Formations

——[@Burns

~=—B® Propagators 5.94 | a

I prop

~»—[1 solar System

1 solvers

= —[@ Plots/Reports

poswel 2.97

=—® Interfaces

[E matlab

|5 matlab server

=@ scripts

|5 Basicscript

——[ A variables/arrays

=@ Coordinate Systems
J- EarthM)2000Eq
J= EarthM]2000Ec 297 _
- EarthFixed

[ Functions

| | | | | | |
-9680 -7260 -4840 -2420 o] 2420 4840

R T B L e R et s e
For body Sun, not using potential file, so using default mu (132712440017.990005493164062500)
Mission run completed.

====> Total Run Time: 3.330000 seconds

Figure 3.17: Results of the Script Example, Run on Linux

Once the final command has executed, the Sandbox sends a message to the Mission Control Sequence
stating that the run has completed execution, and control is returned to the Moderator from the Sandbox.
The Moderator returns control to the Guilnterpreter, which returns control, through the GUI, to the user,
completing the mission run. Figure BI7 shows the results of this sequence when executed for the script
shown in Listing 311

3.3 Summary

This completes the presentation of the overview of GMAT’s architecture. In this chapter we have discussed
the basic architecture for GMAT, presented an overview of the arrangement of the components of the system
that we will build upon in upcoming chapters, and presented a programmatic description of the workflow
of three common tasks performed in GMAT: Starting the system, Creating resources and comments for a
spacecraft mission, and running that mission.

The next few chapters will present, in some detail, descriptions of each of the components of the Engine
package, followed by sections describing the infrastructure used for the Resources and Commands, and then
the design features of these elements.
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Overview of Chapters [4 through

Mission modeling is performed in GMAT through the core numerical engine designed for the system. This
part of the architectural specification describes the classes that make up the core engine components: the
Moderator, the Factory Manager, the Configuration Manager, the Publisher, and Sandboxes. The purpose
of each of these components is summarized in Table Bl

Table 3.1: Key Elements of the GMAT Engine

Component Notes ‘ Description

Moderator Singleton Controls the program flow in the Engine.

Factory Manager Singleton Responsible for the creation of objects and Mission Con-
trol Sequence commands used in the flight dynamics
model.

Configuration Manager | Singleton Stores and retrieves user objects created by the Factory
Manager.

Publisher Singleton Passes data generated during a run to the Subscribers
that present these data to users.

Sandbox Multiple copies | The component that manages initialization and execu-

allowed! tion of the Mission Control Sequence when a mission is
run.

Contents of the Chapters

Each component of the engine is described in a separate chapter, structured on the following outline:

Overview The introductory text for each chapter contains an overview of the component and its role in
the GMAT engine.

Design Principles This section describes the motivation behind the component, along with the principles
followed while designing it. It includes a description of patterns or other criteria used in the component
design, the roles and responsibilities handled by the component, and other design features that will
help you understand how the component fits into the GMAT engine.

Design The design section presents the design for the component. It starts with the class diagram for the
component, followed by descriptions of representative methods and attributes of the class selected to
help you understand its implementation. It also provides an explanation of how the class satisfies the
roles and responsibilities identified in the preceding section, through the use of activity and sequence
diagrams. Sometimes the details of these descriptions are better placed in other portions of the design
specification; when that happens, a summary is provided in the chapter along with a reference to the
detailed description.

Usage and Modification This section of the chapter provides additional tips about how to use or change
the component, and includes text describing best practices for working with it.

1While GMAT is designed to allow more than one Sandbox, the current implementation only uses a single Sandbox.
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Chapter 4

The Moderator

The entry point into GMAT’s engine is the Moderator. The Moderator controls program flow, creating
components through the factory manager that are then managed in the configuration manager, and then
using these components to model missions in a sandbox. The Moderator creates the engine components,
manages those components when necessary, and controls the processes in GMAT’s engine. It initializes the
Sandbox prior to a run, and launches the run in the Sandbox. In other words, the Moderator is the central
control element of GMAT, acting as the interface between users and the internal elements of the system,
and facilitating communications between those internal elements.

The engine contains one component, the Publisher, that does not interact with the Moderator beyond
initialization. The Publisher, described in Chapter [8 is the communications interface between the Sandbox
objects and the Subscriber objects that present data to users. The following sections discuss interactions be-
tween engine components and the Moderator.With the exception of initialization, these interactions exclude
the Publisher.

This chapter explains how the Moderator accomplishes its tasks.

4.1 Moderator Design Principles

Figure shows a high level view into GMAT’s architecture. That figure contains arrows showing all of the
allowed communications paths in the engine. Figure 4.1l shows the portion of that diagram that corresponds
to the Moderator’s role in GMAT. The Moderator handles all communications between the Interpreters and
the engine, and between the components of the engine used to set up and run a mission.

While the arrows in this figure show the information flow through the Moderator, they do not state
explicitly what data or objects move along these paths. The Moderator is the manager for all of the tasks
accomplished in the engine.

The Moderator design is built around two design patterns: the Singleton pattern and the Mediator
pattern. The Mediator pattern is discussed in Section The Moderator consolidates the management
actions needed for GMAT into a central location. It is a singleton to ensure that this consolidation happens
at only one place for the GMAT executable. Each instance of GMAT running in memory has exactly one
Moderator managing the GMAT engine.

There are seven key actions that the Moderator is responsible for managing, described in the next section.

4.1.1 Moderator Responsibilities

The Moderator plays a central role in seven tasks:

1. Engine Initialization: The Moderator is responsible for initializing GMAT’s engine when the system
starts.

39
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Guilnterpreter Scriptinterpreter

Configuration Factory
Manager Manager

Figure 4.1: Program Flow and the Moderator

Object Creation: All object creation requests made by users are passed, through an Interpreter,
to the Moderator. The Moderator starts this process by passing creation requests to the factory
subsystem, and completes it by sending the created objects to their destinations.

Object Configuration: All object configuration requests made by users are passed, through an
Interpreter, to the Moderator. The Moderator locates the object that needs configuration, and passes
that object to the process that performs the configuration.

Loading a Script: The Moderator works with the Script Interpreter to manage the creation and
configuration process performed when a script file is loaded into the system.

Running a Mission: The Moderator ensures that all of the elements needed to run a mission are
provided to the Sandbox used in the run, and then passes the initialization and run control into that
Sandbox. The Moderator then monitors the process in the background during the run, and handles
the communications necessary when a user interrupts the run.

Saving a Mission: The Moderator acts as an intermediary between the objects configured in GMAT
and the Interpreters when a mission is saved, locating and serving up the objects that need to be
serialized as needed by the Interpreters.

User Extension: The Moderator provides the interfaces needed to extend GMAT using user libraries.

Each of these tasks involves communications between components of the engine that, were the Moderator
absent, would be made directly between the engine components. While that approach may seem like a more
efficient avenue at first, the resulting number and types of communications that it would necessitate would
produce a much more tightly coupled system. As the number of engine components increases, the complexity
of these component interactions would also increase. The Moderator reduces this communications complexity
by consolidating the communications into a central component, using a design pattern called the Mediator
pattern.

4.1.2 The Mediator Pattern Employed in the Moderator

The Moderator is designed to enforce loose coupling between the elements of GMAT’s engine, and to simplify
and standardize the communications between the other elements of the engine. It acts as an intermediary
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between user inputs passed in through the script and GUI interpreters, the factory subsystem used to
build objects needed to simulate a mission, the configuration that stores these configured objects, and the
sandboxes that actually run the simulation. It is built using the Mediator design pattern, as described in
[GoF] and summarized in Appendix [Bl This pattern enforces the following features:

Loose Coupling The engine components communicate with each other through calls into the Moder-
ator. This feature means that the other engine components do not need to know how to communicate with
each other. Instead, they make all communications calls to the Moderator, which is responsible for routing
these calls to the appropriate recipients. In other words, the Interpreters, Factory Manager, Configuration
Manager, and Sandboxes do not know about each other. Instead, all of the interactions between these
components is made through calls to and from the Moderator.

Maintainability All communications between the Interpreters, Factory Manager, Configuration Man-
ager, and Sandboxes is performed through the Moderator. This consolidation of the information exchange
between the components centralizes the location for communications mishaps, and simplifies the task of
correcting these defects as they are detected. In addition, the interfaces in the Moderator are designed
to be consistent, reducing the number of different calling protocols that a maintainer needs to learn and
understand.

Implications

The design of the Moderator as a Mediator produces the following benefits:

Decouples Objects Since the internal communications between the components of the engine pass
through the Moderator, the other elements of the engine do not need knowledge about each other.

Simplifies Object Protocols The Moderator simplifies objects by replacing direct communications
between the engine components with communications through a central component.

Abstracts Object Communications Since the Moderator stands separate from the actions taken by
the other engine components, work performed by the Moderator has the effect of reducing the interfaces in
the engine components to the minimal set necessary to achieve these communications. This feature simplifies
those interfaces, and encourages better encapsulation of the workings of the other components.

Centralizes Complexity All of the complexity involved in the communications between the engine
components is captured in the Moderator. The interactions between the other engine components is greatly
simplified through this design, making the engine easier to understand and maintain.

Summary

To summarize, the design of the Moderator reduces the interaction complexity in GMAT’s engine; commu-
nications complexity resides in the Moderator, rather than in the interactions between the Interpreters and
the elements of the engine. The other objects involved in these communications — the Script and GUI In-
terpreters, the Factory Manager, the Configuration Manager, and the Sandboxes — are less complex because
they only communicate with the Moderator, rather than with each other. The Moderator is constructed to
handle all of the interactions between the interpreters and amongst the engine components. You are unlikely
to need to make any changes to the Moderator unless you are adding an unanticipated feature.
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4.2 Moderator Design

Figure shows the Moderator, the classes it interacts with, and some of its internal structures. The
interactions between the Moderator and other elements of GMAT’s engine were presented in Chapter
The sequence diagrams presented there describe the interfaces to the Moderator and their usage when
constructing and using a model. The methods shown in Figure [£.2] present representative examples of these
interfaces in more detail.
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Figure 4.2: The Moderator in its Environment

4.2.1 Class Details

The following paragraphs describe the internal data members used by the Moderator and a brief discussion
of how the methods shown in the figure are used to accomplish its tasks. Full details of the Moderator
and its members can be found in the Doxygen documentation, generated by running Doxygen[doxygen| on

GMAT’s source code.

Class Attributes

There are several key data members that the Moderator uses to perform its assigned tasks. These members
are

e Moderator *instance: The instance pointer in the Moderator is the singleton instance used
throughout GMAT.
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e std::vector<Sandbox*> sandboxes: GMAT’s Sandbox class is used to run missions simulating
spacecraft in orbit. The Sandbox instances are the only key players in the engine which do not exist
as singletons. Instead, the Sandbox instances are managed by the Moderator using the sandboxes
vector.

e std::vector<GmatCommand*> commands: GMAT maintains a 1:1 mapping between the Sand-
box instances and the Mission Control Sequences assigned to each Sandbox. The Moderator uses its
commands vector to manage the first node of the command sequence linked list for the Mission Control
Sequence of each Sandbox.

e SolarSystem* theSolarSystemInUse: GMAT’s Solar System model (see Chapter [[1)) is an aggre-
gated object configured to include all of the bodies, special points, and other environmental elements
necessary for precision spacecraft modeling. The Moderator manages the Solar System used in the
Sandboxes, and stores the current Solar System in the theSolarSystemInUse data member.

o std::string theCurrentPlanetarySource: This string identifies the source of the planetary ephemerides
used in GMAT’s environmental model.

e RunState runState: The Moderator keeps track of the current state of the Sandbox instances in
order to facilitate communications about that status between the interpreters and user interfaces,
the Publisher, and the Sandbox instances'. The runState member tracks this information for the
Moderator.

Each of these class attributes plays a role in the seven tasks managed by the Moderator. Figure also
shows several methods used for these tasks. These methods and their roles in the Moderator’s tasks are
described next.

Initialization and Finalization Methods

The Moderator is responsible for starting the internal components of GMAT’s engine, and for ensuring that
those components exit gracefully when GMAT is closed. The start up process is described in some detail in
section B.2.1] Initialization and finalization are performed through the following two methods:

e bool Initialize(bool isFromGui = false): The Initialize method creates the core engine compo-
nents, parses the start up file and sets up the external file pointers for references contained in that file,
and populates the Factory manager with the default factories. This method should be called before
performing any other interactions with the GMAT engine. The input parameter, isFromGui, is used
to determine if the default mission should be constructed during initialization.

e void Finalize(): The Finalize method is called as GMAT shuts down. This method frees memory
that was allocated for use by the Moderator, and closes any open files managed in the Moderator.

Creation and Configuration Methods

The creation process, described in Section for configured objects and in Section B.2.3] for commands,
allocates objects and stores them in GMAT’s configuration database or the Mission Control Sequence,
respectively. These objects can then be accessed by GMAT so that their attributes can be set as needed for
the simulation, and, for the objects in the configuration database, so that they can be copied into a Sandbox
prior to a mission run. The Moderator acts as the intermediary for the creation and object access processes,
using methods tailored to these actions.

The full set of creation and access methods are best viewed in the Doxygen files. The following method
descriptions are representative of the full set found there. The methods listed here use the Burn classes to

1The current implementation uses a single runState data member. This data structure will change to a vector when the
multiple Sandbox features of GMAT are enabled.
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illustrate the objects that can be created in GMAT; other types of objects are created and configured using
similar methods.

e StringArray GetListOfFactoryltems(Gimat::ObjectType type): This method returns a list
of all of the creatable types of objects of a given supertype, described by the type parameter. For
example, if the type parameter is set to the BURN type, the returned string array contains the entries
“ImpulsiveBurn” and “FiniteBurn”.

e Burn* CreateBurn(const std::string &type, const std::string &name): Creates a Burn object
of the specified subtype, with the specified name. The Moderator contains creation methods for all of
GMAT’s core types. These methods are all similar in form to the method shown here; they specify the
subtype and name of the requested object, and then return a pointer to the object if it was created
successfully.

e Burn* GetBurn(const std::string &name): Retrieves the Burn object with the specified name.
Similar methods exist for all of GMAT’s core types.

e GmatBase* GetConfiguredObject(const std::string &name): Returns a base class pointer to
the configured object of the specified name.

e GmatCommand* CreateCommand(const std::string &type, const std::string &name, bool
&retFlag): Creates a Mission Control Sequence command of the specified type.

e GmatCommand* AppendCommand(const std::string &type, const std::string &name,
bool &retFlag, Integer sandboxNum = 1): Creates a Mission Control Sequence command of
the specified type, and passes it into the Mission Control Sequence associated with the specified Sand-
box.

e GmatCommand* GetFirstCommand(Integer sandboxNum = 1): Retrieves the first command
in the Mission Control Sequence associated with the specified Sandbox. Since the Mission Control
Sequence is a linked list, this method can be used to retrieve the entire Mission Control Sequence.

Reading or Saving a Mission

The processes followed when loading a mission into GMAT and when saving a mission from GMAT are
managed by the Script Interpreter.

The read process is implemented as a sequence of object creations and configurations in the Script
Interpreter. The Moderator passes requests for these processes to the Interpreter through several different
methods, including these:

¢ bool LoadDefaultMission(): Clears the current configuration and Mission Control Sequence from
memory, and then creates and configures the default GMAT mission.

e bool InterpretScript(const std::string &filename, bool readBack = false, const std::string
&newPath = ""): Creates and configures all of the objects in a script file.

Each object defining a mission in GMAT includes the ability to serialize itself so that is can be passed
to an external process or written to a file. The Moderator passes requests for this serialization to the Script
Interpreter for processing. A representative example of the Moderator methods used for this process is the
SaveScript method:

e bool SaveScript(const std::string &filename, Gmat::WriteMode mode = Gmat::SCRIPTING):
Builds scripts from the configured objects and commands, and write them to a file named by the
filename parameter. The writeMode parameter is used to determine the style of the serialization;
it can be set to either the default SCRIPTING style or to a style, MATLAB_STRUCT, compatible with
MATLAB.

Details of the actual processes followed when reading or writing a script can be found in Chapter
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Methods Used to Run a Mission

The process followed when GMAT runs a mission is described in Section The process is relatively
straightforward: the configured objects and Mission Control Sequence are loaded into the Sandbox instance,
initialized to establish the connections between those objects, and then run in the Sandbox, as described
in Section B.2Z.3] and in Chapter Bl The Moderator supports these tasks through the following methods and
through similar methods that can be examined in the Doxygen output.

e Integer RunMission(Integer sandboxNum = 1): Loads objects into the specified Sandbox,
initializes it, and starts the mission run in the Sandbox.

e Integer ChangeRunState(const std::string &state, Integer sandboxNum = 1): Method used
by the interpreters to update the run state information in the Moderator, so that the Sandbox can
later check the Moderator’s run state.

e RunState GetUserInterrupt(): Method called to determine if the user has requested a change in
the run state. This method queries the interpreter for state changes before returning the run state, so
that the interpreter code has an opportunity to update the state based on user actions.

e RunState GetRunState(): Returns the current run state of the Sandbox.

The Moderator keeps track of the state of execution in the Sandbox instance so that it can respond to
messages from the interpreters that affect the system, like user commands to pause or terminate the run.
The discussion in Section presented the program flow exercised during a mission run. During the
loop through the Mission Control Sequence shown in Figure B.16] the Sandbox polls the Moderator for the
execution state. This polling checks the Moderator’s state variable and responds accordingly, as discussed
in Chapter [l
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Figure 4.3: State Transitions in the Moderator
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State Transitions in the Moderator The Moderator tracks the current state of the system using a
parameter named runState, which is set to a value in the RunState enumeration (see Table [3.8) defined in
the Gmat namespace. The engine states tracked in the Moderator are the IDLE, RUNNING, and PAUSED
states.

Figure M3l shows the run state transitions tracked by the Moderator. The Moderator is created with
the run state set to the IDLE state. Most of the time, the Moderator remains in the IDLE state, processing
messages from users and managing the internal components of the GMAT engine?.

When a user executes a Mission Control Sequence, the Moderator transitions to the RUNNING state. In
this state, the Moderator performs very limited processing while the control of the system is managed by the
sandbox that is running the mission. The sandbox polls the Moderator for user activity at convenient points
during the mission run. This polling allows the Moderator to respond to user actions that either terminate
the mission early or pause the mission.

If the user presses the pause button on the GUI, the Moderator transitions into the PAUSED state when
the sandbox polls for state status. This activity stops the mission run, but maintains data so that the run
can be resumed from the point of the stop. The user tells the Moderator to resume the run by pressing
the run button on the GUI. When the Moderator receives the run message, it transitions back into the
RUNNING state and tells the sandbox to resume the run.

The user can terminate a run early by pressing the stop button on the GUI during a run. This action
always causes the Moderator to transition from its current state - either RUNNING or PAUSED - into the
IDLE state.

Support for Extending GMAT

GMAT employs a design pattern that allows the objects and commands used in simulations to be treated
generically in the engine code. The system can be extended by creating a class or collection of classes, derived
from one of GMAT’s base classes, for each new feature that is added to the system, and then creating a
Factory class that constructs instances of these new classes. This Factory is registered with GMAT’s Factory
Manager through the following call in the Moderator:

e bool RegisterFactory(Factory* newFactory): Adds a Factory to the object creation subsystem
managed by the Factory Manager.

Further details of the Factory subsystem can be found in Chapter [l

4.3 Usage and Modification

The Moderator runs in the background for most of GMAT’s programmatic tasks. You’ll need to interact
with it directly if you are working with the Factory Manager, Configuration Manager, or Sandbox code, or
if you are adding a new interface to GMAT that requires a new Interpreter. Most programmatic tasks are
not that extensive, and can be performed without changing the Moderator.

If you are adding a new user class to GMAT, you’ll need to register the factory that creates instances
of that class. These extensions are made through a call to the Moderator’s RegisterFactory method, as
described in Chapter 28 In addition, if the new class is not derived from a base class matching the set of
Create and Get functions in the Moderator, you may need to add these methods to the Moderator code®.

By design, the Moderator was written to support operations in GMAT’s engine as it stands without the
need for further extension. If you find a case that seems to need new functionality in the Moderator, please
start a discussion regarding the change on GMAT’s message forums at SourceForge®.

2Many of the activities performed by the Moderator in the IDLE state are described in Chapter Bl Additional Moderator
interactions with the other engine components are described in the appropriate sections of this document.

3The GMAT development team has this item noted as an issue that needs to be resolved.

4http:/ /sourceforge.net/projects/gmat



Chapter 5

The Sandbox

5.1 Design Principles
5.1.1 Sandbox Responsibilities
1. Clones configured objects for use during a run.
2. Connects local objects and commands together during initialization.

Runs the Mission Control Sequence.

- W

Responds to interrupts from teh Moderator.
5. Passes output data to the Publisher.
6. Coordinates mission-run communications with outside processes.

7. Resets itself for new runs.

5.2 Design
5.2.1 Class Details
Class Attributes

5.2.2 The Late Binding Strategy
Sandbox Initialization Details

Figure Bl shows the steps taken to initialize a control sequence — either the Mission Control Sequence or a
Function Control Sequence.

5.2.3 Interrupt Polling During a Run
5.3 Usage and Modification
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Chapter 6

The Factory Manager

The Factory Manager uses Factory classes to create objects for GMAT’s model. It takes creation messages
from the Moderator, passes those messages into the Factory designed to create the specific type of object
requested, and returns the created object to the Moderator.

This chapter describes the Factory Manager and introduces the Factory classes. The Factory Manager
acts as the central junction into the Factory subsystem, managing Factories as they are created an d reg-
istered, and routint creation requests to the specific Factory that knows how to create a requested type of
object.

Object creation is performed in a Factory derived from the Factory base class. An overview of the Factory
infrastructure is provided in Section Details about how you use the Factory classes to extend GMAT
can be found in Chapter

6.1 Design Principles

6.1.1 Factory Manager Responsibilities
1. Manages object creation for the engine.
2. Calls Factory classes to create objects.
3. Registers new Factories to support newly defined objects.

4. Provides a list of creatable object types.

6.1.2 The Abstract Factory Pattern, Factory Subclasses, and the Factory Man-
ager

6.2 Design

6.2.1 Class Details

Class Attributes

6.2.2 Design of the Factory Classes

Factory Details

6.3 Usage and Modification
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Chapter 7

The Configuration Manager

User created objects are stored in a vector of object pointers called the configuration. The Configuration
Manager maintains this vector, provides access to the members, and adds new objects to teh vector as they
are created. This chapter describes how the Configuration Manager performs these tasks.

7.1 Design Principles
The Configuration Manager Does not initiate communications with any other components of GMAT. It

responds to requests from the Moderator to store or retrieve components of the GMAT model.

7.1.1 Configuration Manager Responsibilities

The Configuration Manager plays a central role in object storage and retrieval for the model elements. It
performs the following tasks:

1. Maintain the collection of configured objects used in the model.

2. Add new objects to the collection when they are created, ensuring that the new objects have unique
names.

Retrieve objects as they are needed.

-

Retrieve the list of stored objects, either by type or generically.

Clear the configuration in preparation for a new mission.

(24

7.2 Design

7.2.1 Class Details
Class Attributes

7.3 Usage and Modification
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Chapter 8

The Publisher

8.1 Design Principles

8.1.1 Publisher Responsibilities

1.

- W

Registers data Subscribers that receive data during a mission run.

Receives published data during a run and passes it to Subscribers.

Flushes data streams when needed.

Passes messages indicating state changes and other run information to the Subscribers.

Manages the subscriber list, adding or removing Subscribers as needed.

8.2 Design

8.2.1 Class Details
Class Attributes

8.3 Usage and Modification
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Chapter 9

The GmatBase Class, Constants, and
Defined Types

Darrel J. Conway
Thinking Systems, Inc.

This chapter documents GMAT’s predefined data types, constants, and the core user classes used in
GMAT to implement the flight dynamics model.

9.1 Defined Data Types

GMAT uses the C++ type definition mechanism to define the data types shown in Table These
definitions, found in the gmatdefs.hpp header file, provide a mechanism to generalize common data types
and frequently used structures in the source code.

Table 9.1: Data Types Defined for GMAT

Defined typedef Type Name Description

double Real 8 byte float

int Integer 4 byte signed integer
unsigned char Byte 1 byte character

unsigned int UnsignedInt 4 byte unsigned integer
std::vector<Real > RealArray Vector of Reals
std::vector<Integer> IntegerArray Vector of signed integers
std::vector<UnsignedInt > UnsignedIntArray Vector of unsigned integers
std::vector<std::string> StringArray Vector of strings
std::vector<GmatBase* > ObjectArray Vector of GmatBase objects
std::vector<Gmat::Object Type> | ObjectTypeArray Vector of object type identifiers

9.2 Error Handling in GMAT

GMAT responds to critical anomalies in the configuration or other settings by throwing exceptions reporting
the error. Every effort has been made to make GMAT’s exception messages consistent and informative. Less
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serious anomalies may be reported through masseges passed as warnings to GMAT’s messaging system. The
classes implemented to support these two mechanisms are documented in Chapter [I0l

9.3 GmatBase

The factory classes described in Chapter [ are used to generate the resources and Mission Control Sequence
commands needed to simulate flight dynamics models. The objects that are generated in GMAT correspond-
ing to these model elements are all instances of classes derived from a base class named GmatBase. The
GmatBase class defines a common set of interfaces used to build, configure, maintain, and store these ele-
ments. This commonality of the interfaces into user defined objects enforces consistency, simplifying common
tasks that are performed on these objects.

Since understanding of the GmatBase is key to understanding how to work with the source code for the
model, this section of the document is written to thoroughly capture the contents of the class. We’ll begin by
examining the class features in the following sections, and then provide some information about how GMAT
uses these features to set properties while reading and to serialize model objects while writing objects to a
text stream.

9.3.1 GmatBase Attributes and Methods

The features of GmatBase are broken into the class attributes and methods. The method descriptions are
categorized into 777 subsections: (1) Constructors, Destructor, and Static Methods, (2) Object Management
Interfaces, (3) Interfaces Used for Scripting, the GUI, and External Communications, (4) Class Attributes
for Referenced and Owned Objects, (5) Class Attribute Management interfaces, and (6 — 9) sections for the
interfaces into Reals, Integers, Strings, and other attribute types.

Class Attributes

GmatBase contains data structures designed to manage the common elements shared by all of the derived
classes. Configurable pieces of the derived classes are referred to as “parameters” in the GmatBase code;
hence the Integer attribute “parameterCount” reports the number of parameters that can be accessed for
instances of the derived class. The attributes of GmatGase are described here:

e static Integer instanceCount: Count of the number of GmatBase objects currently instantiated.
e Integer parameterCount: Count of the accessible parameters.

e std::string typeName: Script string used or this class.

e std::string instanceName: Name of the object — empty if it is nameless.

e Gmat::ObjectType type: Enumerated base type of the object.

e Integer ownedObjectCount: Number of owned objects that belong to this instance.
e std::string generatingString: Script string used to build the object.

e ObjectTypeArray objectTypes: The list of generic types that this class extends.

e StringArray objectTypeNames: The list types that this class extends, by name.

e ObjectTypeArray refObjectTypes: The list of object types referenced by this class.
e StringArray refObjectNames: The list of object names referenced by this class.

e bool callbackExecuting: Flag indicating whether or not a Callback method is currently executing.
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e std::string errorMessageFormat: The format string used when throwing error messages for named
objects.

e std::string errorMessageFormatUnnamed: The format string used when throwing error messages
for unnamed objects.

e bool inMatlabMode: Flag used to deterine if the current write is in Matlab mode.

e std::string commentLine: String used to hold the comment line.

e std::string inlineComment: String used to hold inline comment.

e StringArray attributeCommentLines: String array used to hold the attribute comments.

e StringArray attributelnlineComments: String array used to hold the attribute inline comments.

Constructor, Destructor, and Static Methods

GmatBase implements methods that override the default compiler-generated construction and destruction
capabilities, along with several class level utilities, as described below.

Default Methods C++ automatically defines four methods when a class is defined in code: a default
constructor, a copy constructor, a destructor, and an assignment operator. Every user class in GMAT
overrides these methods to prevent generation of the default compiler versions.

e GmatBase(Gmat::ObjectType typeld, const std::string &typeStr, const std::string &nomme
= "™"): This is the default constructor for all GmatBase objects.

e virtual GmatBase() = 0: The base class destructor. The destructor is set as abstract, but it does
have an implementation; designating it as abstract ensures that the compiler will not allow GmatBase
base class instances.

e GmatBase(const GmatBase &a): The copy constructor.
e GmatBase& operator=(const GmatBase &a): The assignment operator.

Static Methods The GmatBase class provides a mechanism to count object instances, provide numerical
precision setting data, and find object types and names through the following static class methods:

e static Integer GetInstanceCount(): Method to return the current number of instantiated objects.

e static Integer GetDataPrecision(): Returns the current precision setting used when converting
Real numbers into strings.

e static Integer GetTimePrecision(): Returns the current precision setting used when converting
epoch data into strings.

e static std::string GetObjectTypeString(Gmat::ObjectType type): Method for getting GMAT
object type string.

e static Gmat::ObjectType GetObjectType(const std::string &typeString): Method for get-
ting GMAT object type.

Object Management Interfaces

GmatBase provides interfaces that are used to identify the object so that it can be accessed, and so that
other objects can find and connect to it. These interfaces are described in this section.
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Base Class Property Interfaces We’ll begin by listing the interfaces that are used to retrieve information
about the current object.

virtual Gmat::ObjectType GetType() const: Retrieves the core type of the object.
inline std::string GetTypeName() const: Retrieves the test description used for the object type.

inline std::string GetName() const: Retrieves teh object’s name. Names in GMAT are used to
access objects in the Configuration; each user defined object that is stored in the configuration is given
a unique name.

virtual bool SetName(const std::string &who, const std::string &oldName = ""): Renames
the object.

virtual Integer GetParameterCount() const: Returns the number of parameters that can be
accessed for the object using the parameter interfaces, discussed below.

bool IsOfType(Gmat::ObjectType ofType): Checks the object to see if it is derived from the
specified ObjectType.

bool IsOfType(std::string typeDescription): Checks the object to see if it is derived from the
specified named type.

Overridable Interfaces The interfaces listed next are interfaces that are overrridden in the derived classes
to provide functionality as needed.

virtual GmatBase* Clone() const = 0: Every GmatBase derived class that can be instantiated
must implement the Clone() method. Clone() is used to copy objects from the configuration into the
Sandbox prior to the execution of the Mission Control Sequence.

virtual void Copy(const GmatBase*): The Copy() method is provided so that objects that need to
copy data from other objects of the same class type can do so even when referenced through GmatBase
pointers.

virtual bool Initialize(): Objects that need to preform specific initialization tasks override this
method to perform those tasks. The Sandbox calls the Initialize() method as part of the Sandbox
initialization process.

virtual void SetSolarSystem(SolarSystem *ss): Objects that need access to GMAT’s current
SolarSystem object override this method to set their SolarSystem pointer.

virtual bool RequiresJ2000Body(): Classes that need location data in the model use a referenced
body — referred to as the J2000 body — as the origin for spatial conversions. Classes that require this
body override the RequiresJ2000Body method to return true from this call.

virtual bool TakeAction(const std::string &action, const std::string &actionData = ""):
TakeAction() is a utility method that derived classes override to provide functionality that cannot be
implemented through basic parameter setting calls'.

virtual void FinalizeCreation(): Performs initialization of GmatBase properties that depend on
the features of the derived classes. Derived classes can touch some of the base class properties — the
parameterCount, for example. This method is called after the object creation process is complete, so
that any of the object’s base-class properties can be updated to reflect the object’s actual properties.

1One example of the use of the TakeAction() can be found in the Spacecraft class. The Spacecraft class uses TakeAction() to
manage attached tank and thruster objects. Tanks and Thrusters are attached by name to the Spacecraft instances during con-
figuration, but the actual member objects are set during Sandbox initialization through a call, “TakeAction{"SetupHardware");”,
made to the Spacecraft object.
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e virtual std::string GetErrorMessageFormat(): Returns the error message format string used by
the object.

e virtual void SetErrorMessageFormat(const std::string &fmt): Updates the error message for-
mat string used by the object.

Interfaces Used for Scripting, the GUI, and External Communications

The interfaces used for scripting and callbacks are described in the following paragraphs.

General Purpose Interfaces All of the objects used in GMAT’s model have the ability to produce text
descriptions — aka script blocks — sufficient to reproduce themselves and to incorporate text comments that
help document the intent of the setting selected by the user. These interfaces are described here:

e virtual const std::string GetCommentLine() const: Returns the comment lines that occur before
the object definition or command line.

e virtual void SetCommentLine(const std::string &comment): Sets the comment lines that occur
before the object definition or command line.

e virtual const std::string GetInlineComment() const: Returns the comment that occurs inline
at the end of the object definition or command line.

e virtual void SetInlineComment(const std::string &comment): Sets the comment that occurs
inline at the end of the object definition or command line.

e virtual const std::string GetAttributeCommentLine(Integer index): Returns any comment
that occurs before an attribute setting line.

e virtual void SetAttributeCommentLine(Integer index, const std::string &comment): Sets
a comment that occurs before the attribute setting line.

e virtual const std::string GetInlineAttributeComment(Integer index): Returns the comment
that occurs at the end of an attribute setting line.

e virtual void SetInlineAttributeComment(Integer index, const std::string &comment): Sets
the comment that occurs at the end of an attribute setting line.

e virtual const std::string& GetGeneratingString(Gmat::WriteMode mode = Gmat::SCRIPTING,
const std::string &prefix = "", const std::string &useName = ""): Returns a text string that
can be used to regenerate the object. See Section [3.3.3] for an explanation of the write modes.

e virtual StringArray GetGeneratingStringArray(Gmat::WriteMode mode = Gmat::SCRIPTING,
const std::string &prefix = "", const std::string &useName = ""): Returns a string array
that can be used to regenerate the object. See Section [0.3.3] for an explanation of the write modes.

e void CopyParameters(const GmatBase &a): Copies the attributes from one object into the
current object.

e virtual void WriteParameters(Gmat::WriteMode mode, std::string &prefix, std::stringstream
&stream): Writes the parameter details for an object. This method is called by the GetGenerat-
ingString methods to build the individual attribute lines needed to write configured objects.

e void WriteParameterValue(Integer id, std::stringstream &stream): Formats and writes the
attribute value portion of the attribute line.

e virtual void PrepCommentTables(): A private method used to configure teh comment tables so
that they are sized correctly for the owning object.
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Callback Interfaces Some GMAT classes are designed to communicate with external process through a
basic callback method. These classes override the following methods to implement callbacks.

virtual bool ExecuteCallback(): The method called from the external process to execute a task in

GMAT.

virtual bool IsCallbackExecuting(): Monitoring function used to determine if the object is exe-
cuting its callback method.

virtual bool PutCallbackData(std::string &data): Sends data from GMAT to the process that
is using the callback.

virtual std::string GetCallbackResults(): Retrieves the results of the callback.

Class Attributes: Referenced and Owned Objects

Many of the user created objects need to interact with other model objects to correctly model the spacecraft
mission. When an object uses the interfaces for a second named object that is stored in the configuration, the
second object is called a “referenced object” in this document. Occasionally an object will have, as a wholly
owned, encapsulated member, another object. These internal member objects are called “owned objects.”
The methods listed here are implemented to work with the owned and referenced objects.

virtual std::string GetRefObjectName(const Gmat::ObjectType type) const: Returns the
name of a referenced object of a specified type, of the object uses that type of referenced object.

virtual const ObjectTypeArray& GetRefObjectTypeArray(): Returns an array of the refer-
ence object types used by the current object. Derived classes set the types in the refObjectTypes
attribute, which is returned from this call.

virtual const StringArray& GetRefObjectNameArray(const Gmat::ObjectType type): Re-
turns the reference object names used by the current object. Derived classes override this method to
return the correct values.

virtual bool SetRefObjectName(const Gmat::ObjectType type, const std::string &name):
Sets the name of a referenced object.

virtual bool RenameRefObject(const Gmat::ObjectType type, const std::string &old-
Name, const std::string &newName): Resets the reference object name when the reference object
is renamed elsewhere.

virtual GmatBase* GetRefObject(const Gmat::ObjectType type, const std::string &name):
Returns the current reference object of specified type and name.

virtual GmatBase* GetRefObject(const Gmat::ObjectType type, const std::string &name,
const Integer index): Returns the current reference object when there are multiple objects of a given
type. The referenced object is specified by type, name, and index.

virtual bool SetRefObject(GmatBase *obj, const Gmat::ObjectType type, const std::string
&name = ""): Passes a referenced object’s pointer into the object.

virtual bool SetRefObject(GmatBase *obj, const Gmat::ObjectType type, const std::string
&name, const Integer index): Passes a referenced object’s pointer into the object for use in an
array of referenced objects.

virtual ObjectArray& GetRefObjectArray(const Gmat::ObjectType type): Retrieves an
array of referenced objects by type.
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e virtual ObjectArray& GetRefObjectArray(const std::string& typeString): Retrieves an ar-
ray of referenced objects by type name.

e virtual Integer GetOwnedObjectCount(): Retrieves the number of owned objects contained in

the object.

e virtual GmatBase* GetOwnedObject(Integer whichOne): Retrieves teh owned objects by in-
dex into the owned object array.

Class Attribute Accessors: Parameter Management

All of the attributes of the GmatBase classes that are accessible directly by users have associated descriptions,

ID numbers, and types. When attributes have these features, they will be referred to as parameters in this

chapter. Classes can have other attributes that are not directly accessible by users.
The parameters that are reported when an object is serialized are identified and read and write enabled

parameters; those that are not contained in the serialization are nominally identified as read only, though

the base class does not enforce read-only nature on those parameters. Classes that need strict read-only

enforcement implement that nature in the parameter access methods.
The parameter management interfaces are described here:

e virtual std::string GetParameterText(const Integer id) const: Returns the text string associ-
ated with the parameter ID input into the method.

virtual Integer GetParameterID(const std::string &str) const: Returns the ID associated with
a parameter’s description.

virtual Gmat::ParameterType GetParameterType(const Integer id) const: Returns the pa-
rameter type for the specified ID.

virtual std::string GetParameterTypeString(const Integer id) const: Returns the parameter
type string for the input parameter ID.

virtual bool IsParameterReadOnly(const Integer id) const: Returns true if the parameter,
identified by parameter ID, is read-only. Derived classes override this method to identify read-only
parameters.

virtual bool IsParameterReadOnly(const std::string &label) const: Returns true if the pa-
rameter, identified by parameter name, is read-only. Derived classes override this method to identify
read-only parameters.

Static Members Used with Attributes

GmatBase includes several class-level (static) members used to simplify parameter access methods. These
members are specified in the following tables.

String Definitions for Attributes

The arrays shown in Table[@.2 provide text strings for each of GMAT’s

defined data types and object types. These strings are used to identify types in a human readable format.

Table 9.2: Arrays Holding Defined Type Names

Type

Array Name

‘ Purpose

static const std::string

static const std::string

PARAM_TYPE STRING]]
OBJECT TYPE_STRING]]

String mappings for the GMAT data types

String mappings for the GMAT object types
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Constants for Undefined Values Occasionally GMAT objects need an initial value for attribute initial-
ization when that value is not yet available. The static constants shown in Table provide these initial
values.

Table 9.3: Constants Holding Undefined Values

Type Variable Name Value

const, Real REAL PARAMETER_UNDEFINED -987654321.0123e-45

const Integer INTEGER PARAMETER UNDEFINED -987654321

const UnsignedInt | UNSIGNED INT PARAMETER UNDEFINED | 987654321

const std::string STRING PARAMETER UNDEFINED "STRING PARAMETER-
_ UNDEFINED"

const, Rvector RVECTOR PARAMETER UNDEFINED A 1-element Rvec-
tor, initialized to
REAL PARAMETER-
_UNDEFINED

const Rmatrix RMATRIX PARAMETER_ UNDEFINED A 1-by-1 Rmatrix, initialized
to REAL_ PARAMETER-
_ UNDEFINED

The following sections describe the interfaces used to access the parameters. These methods are type
specific; the parameter has to have the type accosiated with teh method in order to return a valid value.

Class Attributes: Real Number Interfaces

GmatBase objects support the following interfaces into Real number attributes:

e virtual Real GetRealParameter(const Integer id) const: Retrieves the Real value of the pa-
rameter with the specified ID.

e virtual Real SetRealParameter(const Integer id,const Real value): Sets the Real value of the
parameter with the specified ID.

e virtual Real GetRealParameter(const Integer id, const Integer index) const: Retrieves the
Real value of a parameter stored in a vector, where the vector is identified by the specified ID, and the
requested element has the specified index.

e virtual Real GetRealParameter(const Integer id, const Integer row, const Integer col)
const: Retrieves the Real value of a parameter stored in an array, where the array is identified by the
specified ID, and the requested element is located in the specified row and column.

e virtual Real SetRealParameter(const Integer id, const Real value, const Integer index):
Sets the Real value of a parameter stored in a vector, where the vector is identified by the specified
ID, and the requested element has the specified index.

e virtual Real SetRealParameter(const Integer id, const Real value, const Integer row, const
Integer col): Sets the Real value of a parameter stored in an array, where the array is identified by
the specified ID, and the requested element is located in the specified row and column.

e virtual Real GetRealParameter(const std::string &label) const: Retrieves the Real value of
the parameter with the text label.
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e virtual Real SetRealParameter(const std::string &label, const Real value): Sets the Real
value of the parameter with the specified text label.

e virtual Real GetRealParameter(const std::string &label, const Integer index) const: Re-
trieves the Real value of a parameter stored in a vector, where the vector is identified by the specified
text label, and the requested element has the specified index.

e virtual Real SetRealParameter(const std::string &label, const Real value, const Integer
index): Sets the Real value of a parameter stored in a vector, where the vector is identified by the
specified text label, and the requested element has the specified index.

e virtual Real GetRealParameter(const std::string &label, const Integer row, const Integer
col) const: Retrieves the Real value of a parameter stored in an array, where the array is identified
by the specified text label, and the requested element is located in the specified row and column.

e virtual Real SetRealParameter(const std::string &label, const Real value, const Integer
row, const Integer col): Sets the Real value of a parameter stored in an array, where the array
is identified by the specified text label, and the requested element is located in the specified row and
column.

e virtual const Rvector& GetRvectorParameter(const Integer id) const: Retrieves a vector of
Real data, contained in an Rvector instance, with the specified ID.

e virtual const Rvector& SetRvectorParameter(const Integer id, const Rvector &value):
Sets a vector of Real data, contained in an Rvector, with the specified ID.

e virtual const Rmatrix& GetRmatrixParameter(const Integer id) const: Retrieves an array
of Real data, contained in an Rmatrix instance, with the specified ID.

e virtual const Rmatrix& SetRmatrixParameter(const Integer id, const Rmatrix &value):
Sets an array of Real data, contained in an Rmatrix instance, with the specified 1D.

e virtual const Rvector& GetRvectorParameter(const std::string &label) const: Retrieves a
vector of Real data, contained in an Rvector instance, with the specified text label.

e virtual const Rvector& SetRvectorParameter(const std::string &label, const Rvector
&value): Sets a vector of Real data, contained in an Rvector, with the specified text label.

e virtual const Rmatrix& GetRmatrixParameter(const std::string &label) const: Retrieves
an array of Real data, contained in an Rmatrix instance, with the specified text label.

e virtual const Rmatrix& SetRmatrixParameter(const std::string &label, const Rmatrix
&value): Sets an array of Real data, contained in an Rmatrix instance, with the specified text label.
Class Attributes: Integer Interfaces

The access methods used for integer parameters — both signed and unsigned — are listed here:

e virtual Integer GetIntegerParameter(const Integer id) const: Retrieves the Integer value of
the parameter with the specified ID.

e virtual Integer SetIntegerParameter(const Integer id, const Integer value): Sets the Integer
value of the parameter with the specified ID.

e virtual Integer GetIntegerParameter(const Integer id, const Integer index) const: Retrieves
the Integer value of a parameter stored in a vector, where the vector is identified by the specified ID,
and the requested element has the specified index.
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virtual Integer SetIntegerParameter(const Integer id, const Integer value, const Integer
index): Sets the Real value of a parameter stored in a vector, where the vector is identified by the
specified ID, and the requested element has the specified index.

virtual UnsignedInt GetUnsignedIntParameter(const Integer id) const: Retrieves the un-
signed Integer value of the parameter with the specified ID.

virtual UnsignedInt SetUnsignedIntParameter(const Integer id, const UnsignedInt value):
Sets the unsigned Integer value of the parameter with the specified ID.

virtual UnsignedInt GetUnsignedIntParameter(const Integer id, const Integer index)
const: Retrieves the unsigned Integer value of a parameter stored in a vector, where the vector is
identified by the specified ID, and the requested element has the specified index.

virtual UnsignedInt SetUnsignedIntParameter(const Integer id, const UnsignedInt value,
const Integer index): Sets the unsigned Integer value of a parameter stored in a vector, where the
vector is identified by the specified ID, and the requested element has the specified index.

virtual const UnsignedIntArray& GetUnsignedInt ArrayParameter(const Integer id) const:
Retrieves an array of unsigned Integers identified by the specified ID.

virtual Integer GetIntegerParameter(const std::string &label) const: Retrieves an Integer
parameter identified by the specified text label.

virtual Integer SetIntegerParameter(const std::string &label, const Integer value): Sets
an Integer parameter identified by the specified text label

virtual Integer GetIntegerParameter(const std::string &label, const Integer index) const:
Retrieves the Integer value of a parameter stored in a vector, where the vector is identified by the
specified text label and the requested element has the specified index.

virtual Integer SetIntegerParameter(const std::string &label, const Integer value, const
Integer index): Sets the Integer value of a parameter stored in a vector, where the vector is identified
by the specified text label and the requested element has the specified index.

virtual UnsignedInt GetUnsignedIntParameter(const std::string &label) const: Retrieves
the unsigned Integer value of a parameter identified by a text label.

virtual UnsignedInt SetUnsignedIntParameter(const std::string &label, const UnsignedInt
value): Sets the unsigned Integer value of a parameter identified by a text label.

virtual UnsignedInt GetUunsignedIntParameter(const std::string &label, const Integer in-
dex) const: Retrieves the unsigned Integer value of a parameter stored in a vector, where the vector
is identified by a text label, and the requested element has the specified index.

virtual UnsignedInt SetUnsignedIntParameter(const std::string &label, const UnsignedInt
value, const Integer index): Sets the unsigned Integer value of a parameter stored in a vector, where
the vector is identified by a text label, and the requested element has the specified index.

virtual const UnsignedIntArray& GetUnsignedIntArrayParameter(const std::string &la-
bel) const: Retrieves an array of unsigned Integers identified by a text label.
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Class Attributes: String Interfaces

String interfaces are used to set reference object names, along with other textual data used inside of the
GmatBase objects. The string interfaces into GmatBase parameters are described here:

e virtual std::string GetStringParameter(const Integer id) const: Retrieves the string value of
the parameter with the specified ID.

e virtual bool SetStringParameter(const Integer id, const std::string &value): Sets the string
value of the parameter with the specified ID.

e virtual std::string GetStringParameter(const Integer id, const Integer index) const: Re-
trieves a string from a vector of strings, where the vector has the specified ID and the retrieved string
is in the vector element identified by index.

e virtual bool SetStringParameter(const Integer id, const std::string &value, const Integer
index): Sets a string in a vector of strings, where the vector has the specified ID and the input string
is placed in the vector element identified by index.

e virtual std::string GetStringParameter(const std::string &label) const: Retrieves the string
value of the parameter with the specified text label.

e virtual bool SetStringParameter(const std::string &label, const std::string &value): Sets
the string value of the parameter with the specified text label.

e virtual std::string GetStringParameter(const std::string &label, const Integer index) const:
Retrieves a string from a vector of strings, where the vector has the specified text label and the retrieved
string is in the vector element identified by index.

e virtual bool SetStringParameter(const std::string &label, const std::string &value, const
Integer index): Sets a string in a vector of strings, where the vector has the specified text label and
the input string is placed in the vector element identified by the specified index.

e virtual const StringArray& GetStringArrayParameter(const std::string &label) const: Re-
trieves a vector of strings stored in the vector associated with a text label.

e virtual const StringArray& GetStringArrayParameter(const std::string &label, const In-
teger index) const: Retrieves a vector of strings from a vector of string arrays identified by a text
label. The retrieved vector is identified by index into the vector of string arrays.

e virtual const StringArray& GetStringArrayParameter(const Integer id) const: Retrieves a
vector of strings stored in the parameter associated with an ID.

e virtual const StringArray& GetStringArrayParameter(const Integer id, const Integer in-
dex) const: Retrieves a vector of strings from a vector of string arrays identified by ID. The retrieved
vector is identified by index into the vector of string arrays.

Class Attributes: Boolean Interfaces

GmatBase supports two types of boolean parameters: standard C++ bool values and a sttring version of
boolean data, set to either the string “On” or “Off.” The interfaces implemented into these parameters is
presented here:

e virtual bool GetBooleanParameter(const Integer id) const: Retrieves the boolean value of the
parameter with the specified ID.
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virtual bool SetBooleanParameter(const Integer id, const bool value): Sets the boolean value
of the parameter with the specified ID.

virtual bool GetBooleanParameter(const Integer id, const Integer index) const: Retrieves
a boolean from a vector of booleans, where the vector has the specified ID and the retrieved boolean
is in the vector element identified by index.

virtual bool SetBooleanParameter(const Integer id, const bool value, const Integer index):
Sets a boolean into a vector of booleans, where the vector has the specified ID and the input boolean
is in the vector element identified by index.

virtual bool GetBooleanParameter(const std::string &label) const: Retrieves the boolean
value of the parameter with the specified text label.

virtual bool SetBooleanParameter(const std::string &label, const bool value): Sets the
boolean value of the parameter with the specified text label.

virtual bool GetBooleanParameter(const std::string &label, const Integer index) const:
Retrieves a boolean from a vector of booleans, where the vector has the specified text label and the
retrieved boolean is in the vector element identified by index.

virtual bool SetBooleanParameter(const std::string &label, const bool value, const Inte-
ger index): Sets a boolean into a vector of booleans, where the vector has the specified text label and
the input boolean is in the vector element identified by index.

virtual std::string GetOnOffParameter(const Integer id) const: Retrieves the state value (“On”
or “Off”) of the parameter with the specified ID.

virtual bool SetOnOffParameter(const Integer id, const std::string &value): Sets the state
value (“On” or “Off”) of the parameter with the specified ID.

virtual std::string GetOnOffParameter(const std::string &label) const: Retrieves the state
value (“On” or “Off”) of the parameter with the specified text label.

virtual bool SetOnOffParameter(const std::string &label, const std::string &value): Sets
the state value (“On” or “Off”) of the parameter with the specified text label.

9.3.2 Setting GmatBase Properties

The somewhat tedious descriptions provided above show the interfaces into parameters for the configured
objects in a static format. The next two sections show in a bit more detail how these interfaces are used
to set parameters and to construct a serialized version of a GmatBase object. We’ll begin with an example
setting several properties on an ImpulsiveBurn object. The class hierarchy for ImpulsiveBurns is shown in
Figure

1 |Create ImpulsiveBurn Burnl;

s |Burnl.0rigin = Earth;

4 |Burnl.Axes = VNB;

5 |Burnl.VectorFormat = Cartesian;
6 |Burnl.Elementl = 3.16;

7 |Burnl.Element2 = O0;

s |Burnl.Element3 = 0;

Listing 9.1: Script Listing for an ImpulsiveBurn



9.3.

GMATBASE 69

cd: Burn Class Hierarchy J

GmatBase

1

Bum

T

FiniteBum ImpulsiveBurn

Figure 9.1: Class Hierarchy for Gmat’s Burn Resources

The serialized text — that is, the scripting — for an ImpulsiveBurn object is shown in Listing As

can
can

be seen on lines 3] — [ in this listing, ImpulsiveBurn objects have six accessible parameters that users
manipulate: the Origin of the burn (“Origin”), the Axes used to orient the burn in space (“Axes”), a

format defining how the burn is written relative to these axes (“VectorFormat”), and the three components
necessary to define the delta-V that this burn models (“Element1”, “Element2”, and “Element3”).
When GMAT reads a script containing these lines, it creates a new ImpulsiveBurn object named Burnl

and

sets the values found in the script into the associated parameters on the object. The object creation

process was described in Section B.2Z2 Figure[0.2lshows the calls made to the new object to set the parameter
values. The steps shown in this figure are straightforward:

1

2

10.

. Call Burnl->GetParameterType(“Origin”) Determines that the “Origin” parameter is a string.

. Call Burnl->SetStringParameter(“Origin”, “Earth”) Sets the “Origin” parameter to the string
“Earth”.

Call Burnl->GetParameterType(“Axes”) Determines that the “Axes” parameter is a string.

Call Burnl->SetStringParameter(“Axes”, “VNB”) Sets the “Axes” parameter to the string
“VNB”, denoting that the burn is specified in the Velocity-Normal-Binormal representation.

Call Burnl->GetParameterType(“VectorFormat”) Determmines that the “VectorFormat” pa-
rameter is a string.

Call Burnl->SetStringParameter (“VectorFormat”, “Cartesian”) Sets the “VectorFormat” pa-
rameter to the string “Cartesian”.

Call Burnl->GetParameterType(“Element1”) Determines that the “Element1” parameter is a
Real number.

Call Burnl->SetRealParameter(“Element1”, 3.16) Sets the “Element1” parameter to the value
3.16.

Call Burnl->GetParameterType(“Element2”) Determines that the “Element2” parameter is a
Real number.

Call Burnl->SetRealParameter (“Element2”, 0) Sets the “Element2” parameter to the value 0.0.



70 CHAPTER 9. THE GMATBASE CLASS, CONSTANTS, AND DEFINED TYPES

11. Call Burnl->GetParameterType(“Element3”) Determines that the “Element3” parameter is a
Real number.

12. Call Burnl->SetRealParameter(“Element3”, 0) Sets the “Element3” parameter to the value 0.0.
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Figure 9.2: Parameter Setting for Listing

9.3.3 Serializing GmatBase Objects

Objects are written to text using the GetGeneratingString() method. GetGeneratingString can serialize
objects this way for several purposes: to write an object to a script file, to pass the object to MATLAB
or a MATLAB compatible external process, or in some cases to generate data used for the generation
of an ephemeris file. The mode used for the serialization is determined using a setting on the call to
GetGeneratingString(). That setting, the write mode, is set using the WriteMode enumeration.
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The following paragraphs describe the process followed when performing serialization of GmatBase ob-
jects. We begin with a brief description of the WriteMode enumeration, followed by a detailed description
of the call to GetGeneratingString that serializes an object for scripting purposes, and conclude with a
description of the differences encountered when serializing an object for MATLAB.

The WriteMode Enumeration

Table shows the modes available to the GetGeneratingString methods for serialization of objects in
GMAT. These modes are defined in an enumeration, WriteMode, contained in the Gmat namespace. GMAT
uses the SCRIPTING mode as the default write mode, generating text strings that are designed to work
with the script interpreter classes when saving a model to a script file.

Table 9.4: The WriteMode Enumeration

Identifier Description

SCRIPTING The mode used when writing an object as it appears in GMAT’s
script files.

SHOW SCRIPT Similar to the SCRIPTING mode, the SHOW SCRIPT mode

serializes an object as it would appear in a script file. The
SHOW SCRIPT mode does not guarantee that the resulting text
is indented as it would be in a written script.

OWNED OBJECT OWNED OBJECT mode is used to serialize the objects owned by
an object that is being written to the text stream.

MATLAB_STRUCT Generates the serialed object as a MATLAB structuire, so that the
object can be passed into MATLAB for external processing.

EPHEM HEADER Generates a string used in GMAT’s output ephemeris headers.

Writing to Script

Figure shows the procedure followed when the GetGeneratingString() method is called on a configured
object to write that object in script format?. The process starts by clearing the current generatingString
attribute, and then writing the initial Create line to it. Objects without any parameters or owned objects
are finished at this point, and simply return the resulting string, following the path shown in green in the
figure.

If the object’s parameter count is not zero, then the GetGeneratingString() method calls the WritePa-
rameters() method, which adds text lines to the generatingString for each parameter that is writable. This
process is shown in yellow in the figure. The process starts by initializing an index into the parameter list for
the object. This index is used to loop through the parameters for the object. For each parameter, the code
calls the IsParameterReadOnly() method to determine if the parameter should be written to teh generating
string. If the parameter is not read only, the current value of the parameter is sent into a string in the
WriteParameterValue() method. The WriteParameterValue method determines the type of the parameter,
and calls the corresponding access method to retrieve the value and place it into a string. This string is
returned to the WriteParameters() method for use as the right hand side of the text string setting the pa-
rameter’s value. The parameter setting string is then build, using a call to GetParameterText() for the left
side of the parameter setting string and the string returned from the call to WriteParameterValue() for the
right side of the parameter setting string. The resulting string is added to the generating string, and the
parameter index is incremented to move to the next parameter.

2GetGeneratingString() can be overridden by the derived classes. The description provided here is the default behavior.
Command classes, in particular, always override this method so that the command specific scripting can be generated.
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Figure 9.3: Flow in the GetGeneratingString() Method

Once the parameter index has iterated through all of the parameters, the call to WriteParameters()
returns control to the GetGeneratingString() method. GetGeneratingString() resets its index, and then
checks for owned objects. If there are any owned objects, each owned object writes its data to the generating
string, following the process shown in orange in the figure. Owned objects write their data through calls
to their GetGeneratingString() methods, with the write mode set to teh OWNED OBJECT mode. After
all of the owned objects have been written, the generating string is returned to the caller, completing the
serialization process.

Listing 0.2 shown an example of the output generated when a coordinate system is written to script.

1 |Create CoordinateSystem SunPointingCS;

2 | GMAT SunPointingCS.0Origin = DefaultSC;

3 | GMAT SunPointingCS.Axes = ObjectReferenced;

4 |GMAT SunPointingCS.Updatelnterval = 60;

5 | GMAT SunPointingCS.0OverrideOriginInterval = false;
6 | GMAT SunPointingCS.XAxis = R;
7 | GMAT SunPointingCS.ZAxis = N;
s | GMAT SunPointingCS.Primary = DefaultSC;
o9 | GMAT SunPointingCS.Secondary = Sun;
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Listing 9.2: Script Listing for a Coordinate System

Writing to MATLAB

The process followed when an object is serialized for export to MATLAB is the same as that shown in the
sequence diagram for writing to script, Figure The key differences between the processes are contained
in the details of the strings generated. When an object is serialized for MATLAB, the Create line is omitted.
The “GMAT” preface used for parameter strings in SCRIPTING mode is also omitted, and strings are
enclosed in single quotes to conform to MATLAB’s syntax. Listing shows the resulting serailized version
of the same coordinate system as was shown in the script serialization example, above.

1 | SunPointingCS.0rigin = ’DefaultSC’

2 | SunPointingCS.Axes = ’0ObjectReferenced’
3 | SunPointingCS.Updatelnterval = 60
4 | SunPointingCS.0verrideOriginInterval = false

SunPointingCS.XAxis = ’R’

6 | SunPointingCS.ZAxis = ’N’
SunPointingCS.Primary = ’DefaultSC’
SunPointingCS.Secondary = ’Sun’

o

-

®

Listing 9.3: MATLAB Listing for a Coordinate System

9.3.4 GmatBase Derivatives

co: CmatBase Subclasses J

Burn Interpolator Propagat or SpacePoint

Figure 9.4: Classes Derived from GmatBase

Figure 0.4 shows the classes derived from GmatBase. These classes are presented more fully in other
chapters of this document. Here is a brief description of each, with cross references to the chapters that
provide the detailed descriptions:

AtmosphereModel Models the Atmosphere for bodies in the SolarSystem. The AtmosphereModel classes
are used to determine atmospheric densities in GMAT’s Drag models. Force modeling is described in
Chapter 211
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Attitude The base class for attitude modeling in GMAT. Attitude modeling is described in Chapter

Burn The base class for burn modeling. The Burn class contains the elements common to finite and
impulsive burns. The burn classes and other components used in maneuver modeling are described in
Chapter

CoordinateBase The base class for coordinate system modeling. GMAT provides a quite extensive system
of coordinate system models, described in Chapter 2

Function The base class for internal and external functions, described in Chapter

GmatCommand The base class for the commands in the Mission Control Sequence. Commands are
described in Chapters 23] and

Hardware The base class for hardware elements that can be attached to other objects. Fuel tanks,
thrusters, sensors, and antennae are all derived from this class. THe Hardware classes are described in
Chapter [[4

Interpolator The base class for the numerical interpolaters. The interpolators are described in Chapter 10l

MathNode GMAT supports mathematics performed as part of the Mission Control Sequence. Mathemat-
ical expressions are decomposed into a tree structure for evaluation. The MathNode class is used for
the nodes in this tree structure, as is described in Chapter

MathTree MathTree objects are used as containers for inline mathematicas in GMAT’s Mission Control
Sequence, as is described in Chapter

Parameter GMAT can calculate many different properties that are useful for analyzing spacecraft mis-
sions. The code that implements these calculations is derived from the Parameter class, described in
Chapter

PhysicalModel The PhysicalModel class is the base class for all of the forces used in GMAT’s propagators.
Force mdodeling is described in Chapter 211

Propagator The Propagator class is the base class for the numerical integrators and analytic propagators®
in GMAT. Propagators are described in Chapter 201

PropSetup The PropSetup class is a container class that connects propagators to force models. When a
user creates a “Propagator” in GMAT, the object that is created is really a PropSetup instance. The
PropSetup class description is in Chapter

SolarSystem The SolarSystem class is the container class used to hold all of the elements of the space
environment: stars, planets, moons, other celestial bodies, calculated points, and any other entities
that are used in the environment model. The SolarSystem instances include specification of global
sources for the model as well — for example, identification of the planetary ephemeris souce used.
These elements are described in Chapter [Tl

Solver Solver classes are used to drive targeting, optimization, and parametric analysis tasks. The Solvers
are described in Chapter 3

SpacePoint All objects that have a physical location in the solar system are derived from the SpacePoint
class. This class is the base class for everything from elements of the solar system to the spacecraft
and groundstations. The SpacePoint class is described in Chapter M1l

3GMAT does not currently contain any analytic propagators; when such propagators are added to the system, they will be
derived from the Propagator class.
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StopCondition GMAT’s integrators can stop when any of a large set of conditions is met. This ability to
stop is provided through the stopping condition class, described in Chapter

Subscriber Subscribers are the recipients of data in GMAT’s publish and subscribe subsystem, introduced
in Chapter B The Subscriber base class, used for all subscribers, is described in Chapter

9.4 Namespaces

GMAT uses several namespaces defined for specific purposes. The “Gmat” namespace is used to define
program specific enumerations defining the types of objects users can configure in GMAT, the types of
data structures commonly used in the system, and more specialized enumerations used by some of GMAT’s
subsystems.

9.5 Enumerations

GMAT uses enumerations to identify some of the key types of objects and parameters in the system, the
current state of the system, and to track modes for some of the system processes. The remainder of this
chapter tabulates the enumerations that are not listed in other places in this document.

9.5.1 The ParameterType Enumeration

GmatBase includes a method, GetParameterType(id), which returns an integer identifier for the type of
the parameter with the ID input to the function. The return value is a member of the ParameterType
enumeration, defined in the Gmat namespace. This enumeration is described in Table 0.5

Table 9.5: The ParameterType Enumeration

Identifier Description

INTEGER TYPE
UNSIGNED INT TYPE
UNSIGNED INTARRAY TYPE
REAL TYPE

REAL ELEMENT TYPE
STRING _TYPE
STRINGARRAY TYPE
BOOLEAN TYPE

RVECTOR_ TYPE

RMATRIX TYPE

TIME TYPE

OBJECT TYPE
OBJECTARRAY TYPE
ON_OFF_TYPE

TypeCount
UNKNOWN _ PARAMETER_TYPE

Integer parameters

Unsigned integer paramneters.

Arrays of unsigned integers.

Real numbers.

A Real number accessed from an array.

A string.

A vector of strings.

A boolean value that evaluates to tru or false.
An Rvector

An Rmatrix

A Real used to represent time.

An object.

A vector of objects.

A boolean that evaluates to either “On” or “Off”
The totla number of ParameterTypes available.
Unknown parameter types.

Set to -1.
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9.5.2 The WrapperDataType Enumeration

Some components of GMAT need to access data elements in a generic fashion. These components, most
notably including the Command subsystem, use a class of wrapper objects that take the disparate types
and present a common interface into those types. The WrapperDataType enumeration is used to identify
the type of underlying object presented by the wrapper classes. More information about this object can be
found in Section 23.43] The defined wrapper types used in this enumeration are shown in Table

Table 9.6: The WrapperDataType Enumeration

Identifier Description ‘
NUMBER a Real or Integer value entered explicitly into the command
STRING a text string with no associated object

OBJECT PROPERTY an internal data member of an object, accessible using the Gmat-

Base parameter accessor methods (GetRealParameter(), Getlnte-
gerParameter(), etc)

VARIABLE an instance of the Variable class
ARRAY an instance of the Array class
ARRAY ELEMENT an element of an Array object

PARAMETER OBJECT any other object derived from the Parameter class

9.5.3 The ObjectType Enumeration

GMAT has an enumeration in the Gmat namespace designed to provide ID values for each of the core types
used in the system. Table shows the identifiers for each entry in this enumeration, along with a brief
description of the type of object the entry identifies.

9.5.4 The RunState Enumeration

The GMAT engine is always maintained in a specific state while the system is running, as is described in
Section 2.7l The RunState enumeration, tabulated in Table is used to track these states.
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Table 9.7: The ObjectType Enumeration

7

Identifier Objects Identified Notes & References
SPACECRAFT Spacecraft Initialized to 1001
Chapter [[3
FORMATION Formations Chapter [[3]
SPACEOBJECT Spacecraft and Formations Chapter [[3]
GROUND _STATION Groundstations Not yet used
BURN Burn objects for finite and impulsive ma- | Chapter
neuvers
COMMAND Commands in the Mission Control Se- | Chapters 23 and
quence
PROPAGATOR Propagators and Integrators Chapter
FORCE_MODEL Force Models Chapter 2T]
PHYSICAL MODEL Individual Forces Chapter 271
TRANSIENT FORCE Forces that are dynamically added or re- | Chapter
moved
INTERPOLATOR Interpolators Chapter [0
SOLAR_SYSTEM Solar System Chapter 1]
SPACE_POINT Objects that have physical locations in | Chapter 01l
the Solar System
CELESTIAL BODY Stars, Planets, and Moons Chapter [I1]
CALCULATED_ POINT Barycenters and Libration Points Chapter [Tl
LIBRATION POINT Libration Points Chapter [T
BARYCENTER Barycenters Chapter [TT]
ATMOSPHERE Atmosphere Models Chapter 2T
PARAMETER Calculated Parameters, Variables, and | Chapter 09
Arrays
STOP _CONDITION Stopping Conditions Chapter [[9]
SOLVER Targeters, Optimizers, and Scanners Chapter
SUBSCRIBER Subscribers Chapter
PROP_SETUP PropSetups Chapter
FUNCTION Internal or External Functions Chapter
FUEL TANK Fuek Tanks Chapter [[4
THRUSTER Thrusters Chapter [[4
HARDWARE Tanks, Thrusters, Antennae, Sensors, etc. | Chapter 04
COORDINATE _SYSTEM | Coordinate Systems Chapter
AXIS SYSTEM Axis Systems Chapter
ATTITUDE Attitude Chapter
MATH NODE Elements of Equations Chapter
MATH TREE Parsed Mathematical Equations Chapter

UNKNOWN_OBJECT

Objects that are not otherwise identified

Objects without one of the
types listed above
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Table 9.8: The RunState Enumeration

Identifier Description

IDLE Initialized to 10000. The IDLE state indicates that GMAT’s engine
is waiting for instructions from the user.

RUNNING GMAT enters the RUNNING state when the user starts a mission
run.

PAUSED When the user presses the Pause button on the GUI, GMAT enters
the PAUSED state.

TARGETING GMAT enters the TARGETING state when the Mission Control
Sequence enters a Target loop.

OPTIMIZING GMAT enters the TARGETING state when the Mission Control
Sequence enters an Optimize loop.

SOLVING GMAT enters the TARGETING state when the Mission Control
Sequence enters other solver loops.

WAITING GMAT defines the WAITING state for use when waiting for com-
pletion of an external process. The current code does not use the
WAITING state.




Chapter 10

Utility Classes and Helper Functions

Darrel J. Conway
Thinking Systems, Inc.

This chapter documents the classes and functions that are used by GMAT to support program function-
ality.

10.1 The Messagelnterface
10.2 Exception Classes
10.3 Mathematical Utilities

10.3.1 The Rvector and Rmatrix Classes
10.3.2 Interpolators

10.4 The GmatStringUtil Namespace
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Chapter 11

The Space Environment

Darrel J. Conway
Thinking Systems, Inc.

The core purpose of GMAT is to perform flight dynamics simulations for spacecraft flying in the solar
system. There are many different components that users interact with to produce this model. In this chapter,
the architecture for the elements that comprise the model is introduced. The elements that are not directly
manipulated in the model — specifically, the Sun, planets, moons, and related points that comprise the stage
on which the spacecraft and related objects perform their actions — are described in some detail in the
chapter. Descriptions for the other objects — most specifically spacecraft and formations — introduced here
appear in chapters for those components. References for those chapters are provided when the objects are
introduced.

11.1 Components of the Model

The environmental elements that have a spatial location and evolve over time in the GMAT model are all
derived from the SpacePoint class. The class hierarchy, shown in Figure [1.0] includes classes that model
the objects and special locations in GMAT’s solar system — referred to as “background” objects because their
evolution is modeled through precalculated ephemerides or computations performed off of these precalculated
data — along with the pieces that are directly manipulated in the mission control sequence and that evolve
through numerical integration using GMAT’s propagation subsystem. In the figure, the classes used to
model background objects are shown in purple; those that evolve through direct modeling in GMAT using
the propagation subsystem are shown in blue, and other elements that will be incorporated in the future, in
red.

The space environment as defined in this document consists of the elements that, while dynamic, are
automatically updated as the model evolves, based on epoch data generated for the model. These elements
are the gravitating bodies in the model — that is, the Sun and the planets and their moons — and points
with specialized significance in flight dynamics, like the Lagrange points and gravitational barycenters. All
of these elements are managed in an instance of the SolarSystem class. SolarSystem acts as a container, and
manages both the objects in the space environment and the resources needed to calculate ephemerides for
these objects. The bulk of this chapter provides details about the classes and objects comprising this space
environment.

A key feature of GMAT is the ability to model spacecraft and formations of spacecraft as they move
through the space environment. These elements of the model are configured in detail by GMAT users,
and evolve through time using precision numerical integrators configured by the users. The Spacecraft and
Formation classes, along with their base SpaceObject class, are discussed in detail in Chapter The
numerical integrators and associated force model components are presented in Chapter

81
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cd: Environmental Objects J
Gmat Base
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CelestialBody Calculate dPoint
Star Planet Moon LibrationFPoint Barycenter

SpaceObject << Future »>

AttachedOb ject
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Figure 11.1: Objects in the GMAT Model.

The elements shown in purple are core constituents of GMAT’s solar system. Classes shown in yellow are
GMAT base classes. Elements shown in blue are the key components studied in GMAT’s model: Spacecradft
and Formations of Spacecraft. Those shown in red are future enhancements, primarily focussed on contact
analysis with different types of objects.

The class hierarchy includes provisions for future model elements attached to components of the space
environment. These classes, FixedObject and the derived GroundStation, FixedTarget and FixedRegion
classes, will be documented at a later date in preparation for implementation.

Before proceeding with a detailed description of GMAT’s space environment, the base class used for all
of the model elements needs some explanation. Those details are provided in the next section.

11.2 The SpacePoint Class

All spatially modeled components need some common data in order to define the positions of objects in the
model. These data are collected in the SpacePoint base class. This base class provides the foundation for
objects used to define coordinate systems (see Chapter[12)), for the user configured Spacecraft and Formations
(see Chapter [[3]), and for other specialized points and objects in the space environment.

Figure shows the elements of the SpacePoint class. In order for GMAT to accurately model flight
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Figure 11.2: The SpacePoint Class
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dynamics problems, the GMAT space model needs to specify an internal origin and coordinate system
orientation used as a reference for computations. SpacePoint defines one object, the J2000 body, which is
used to define that origin. GMAT uses the Mean-of-J2000 Earth Equatorial axis system as the orientation

for all such calculations.

Class Attributes SpacePoint defines two data members to track the J2000 body:

e SpacePoint* j2000Body: The body used to define the coordinate origin for the SpacePoint.

e std::string j2000BodyName: The name of the body defining the coordinate origin.

Methods All classes derived from SpacePoint inherit the implementation of six methods used to set
and access the J2000 body. Five of these methods are used specifically for the internal data members; the
sixth, GetMJ2000Acceleration(), provides a default implementation so that derived classes that do not have
acceleration data do not need to provide an implementation

e bool RequiresJ2000Body(): Returns a boolean used to determine if the SpacePoint requires a

J2000 body.

e const std::string& GetJ2000BodyName(): Returns the name of the J2000 body for the Space-

Point.

e SpacePoint *GetJ2000Body(): Returns the pointer to the J2000 body for the SpacePoint.

e bool SetJ2000BodyName(const std::string &toName): Sets the name of the J2000 body for

the SpacePoint.

e void SetJ2000Body(SpacePoint *toBody): Sets the pointer to the J2000 body for the SpacePoint.
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e Rvector3 GetMJ2000Acceleration(const A1Mjd &atTime): Returns the Cartesian accelera-
tion of the SpacePoint relative to its J2000 body at the specified epoch. The default implementation
returns [0.0, 0.0, 0.0]; derived classes that contain acceleration data should override this method.

Abstract Methods FEach subclass of SpacePoint implements three pure virtual methods defined in the
class, using computations specific to that subclass. THese abstract methods have the following signatures:

e virtual Rvector6 GetMJ2000State(const A1Mjd &atTime) = 0: Returns the Cartesian state
of the SpacePoint relative to its J2000 body at the specified epoch.

e virtual Rvector3 GetMJ2000Position(const A1Mjd &atTime) = 0: Returns the Cartesian
location of the SpacePoint relative to its J2000 body at the specified epoch.

e virtual Rvector3 GetMJ2000Velocity(const A1Mjd &atTime) = 0: Returns the Cartesian
velocity of the SpacePoint relative to its J2000 body at the specified epoch.

11.3 The Solar System Elements

GMAT provides a container class, SolarSystem, that is used to manage the objects modeling the space
environment.

11.3.1 The SolarSystem Class

Members and Methods

Ephemeris Sources

11.3.2 The CelestialBody Class Hierarchy

Stars
Planets

Moons

11.4 The PlanetaryEphem Class



Chapter 12

Coordinate Systems

Darrel J. Conway
Thinking Systems, Inc.

NOTE: This chapter currently contains the original design spec for the coordinate systems.
It needs to be reviewed against the current GMAT system, the figures need to be recreated,
and some of the text needs to be fitted into the rest of the design document.

This chapter presents design guidelines for the coordinate system classes in the Goddard Mission Analysis
Tool (GMAT). It describes how the GMAT software implements the coordinate system math described in the
GMAT Mathematical Specifications[MathSpec]. This description includes the initial design for the classes
that provide coordinate system support in GMAT. The interactions between these classes and the rest of
the GMAT system are also described.

12.1 Introduction

The Goddard Mission Analysis Tool (GMAT) is a multi-platform orbit simulator designed to support multiple
spacecraft missions flying anywhere in the solar system. GMAT is written in C++ and runs on Windows,
Macintosh and Linux computer systems. The tool provides an integrated interface to MATLAB, a high level
computing environment from the Mathworks, Inc[matlab]. The GMAT graphical user interface (GUI) is
written using the wxWidgets GUI Toolkit[wx], an open source library that compiles and runs under all of
the target operating systems.

GMAT is an object-oriented system, using the full extent of the C++ language to implement the object
model that provides GMAT’s functionality. The first three builds of GMAT provided capabilities to model
orbits in the vicinity of the Earth, including detailed force modeling, impulsive maneuvers, and parameter
targeting using a differential corrector. All of these capabilities can be controlled either using either the
GMAT graphical user interface or a custom scripting language designed to simplify GMAT and MATLAB
interactions. The fourth build of the system generalizes the capabilities of GMAT modeling for other orbital
regimes.

In order to model spacecraft trajectories in these regimes, GMAT needs to be able to represent the
spacecraft state and related quantities in coordinate systems that are convenient to each regime. This
document describes how these coordinate systems are implemented in the GMAT code.

12.2 Coordinate System Classes

Figure[[2dlshows the core C++ classes (drawn using Poseidon[poseidon]) added to GMAT to provide support
for coordinate systems in Build 4. The coordinate system capabilities are provided by the incorporation of
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these classes into the GMAT base subsystem®.
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Figure 12.1: Coordinate System Classes in GMAT

The coordinate system classes consist of a CoordinateSystem class that acts as the interface between the
conversions and the rest of GMAT, an AxisSystem base class with a derived hierarchy used for rotational
conversions, a CoordinateConverter class that manages conversions between different coordinate systems,
and a factory constructed as a singleton that create the AxisSystem objects. The CoordinateSystem class is
the component that is instantiated when a user “Creates” a coordinate system object.

Previous builds of GMAT included classes that model spacecraft, formations, and celestial objects. These
classes were derived from a core base class named GmatBase. A new intermediate class, SpacePoint, is
implemented in GMAT to make access to position, velocity, and rotational data available to the coordinate
system classes when needed. Section [[2.2.4] describes this class.

12.2.1 The CoordinateSystem Class

The CoordinateSystem class is a configured component that implements the functionality needed to convert
into and out of a specified coordinate system. Internally, GMAT performs computations in a Mean of
J2000 Earth Equatorial coordinate system, centered at one of the celestial bodies in the GMAT solar system
(i.e. the Sun, a planet, or a moon) or at a barycenter or libration point. Each CoordinateSystem instance
provides methods to transform into and out of these J2000 coordinate systems. It contains the data necessary
for translation calculations, along with a member object pointer that is set to an AxisSystem instance for
coordinate systems whose principle axes are not parallel to the Mean of J2000 Earth Equatorial axes, or to
NULL for coordinate systems that are oriented parallel to these axes.

1The GMAT code base consists of a set of classes that provide the core functionality of the system, the “base” subsystem,
and classes that comprise the graphical user interface, the “gui” subsystem. All of the classes described in this document are
members of the base subsystem, with the exception of the recommendations for changes to the panels on the GUI.
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Figure 12.2: Top level AxisSystem Derived Classes

The AxisSystem class provides the methods needed to rotate the coordinate system into and out of the
Mean of J2000 Earth Equator frame. The AxisSystem is set for a given CoordinateSystem by setting the
axes member to an AxisSystem instance.

GMAT uses a late binding scheme to provide interconnections between objects used when modeling an
analysis problem. Individual components are configured from either the grapical user interface or a script
file describing the objects that need to be modeled. Connections between these objects are defined using the
names of the objects, but the actual object instances used in the model are not set until the simulation is run.
Upon execution, the configured objects are copied into the analysis workspace, called the Sandbox, and the
connections between the configured objects are established immediately prior to the run of the simulation.
The Initialize method in the CoordinateSystem class implements this late binding for the connection between
the coordinate system instance and the related SpacePoints.

12.2.2 The AxisSystem Class Hierarchy

GMAT is capable of supporting numerous coordinate system orientations. These orientations are defined
through the AxisSystem class; each unique axis orientation is implemented as a separate class derived from
the AxisSystem base class. Figure shows an overview of the AxisSystem class hierarchy, and identifies
the top level classes in this hierarchy.

The orientations of the coordinate systems in GMAT fall into two broad categories: axes that change
orientation over time, and those that remain fixed in orientation. The latter category requires computation
of the rotation matrices one time, at initialization, in order to perform the rotations into and out of the
coordinate system. Figure shows the six inertial axis systems supported in GMAT. These systems
support equatorial and ecliptic versions of Mean of J2000, Mean of Epoch, and True of Epoch transformations.

Coordinate systems that are not fixed in orientation over time are derived from the DynamicAxes class,
as is shown in Figure [[2.4l These coordinate systems include equatorial and ecliptic versions of the mean
of date and true of date axes, along with axes that evolve with the polar motion of the body’s rotational
axis (implemented in the EquatorAxes class) and axes that are fixed on the body’s prime meridian (the
BodyFixedAxes class). All of these classes require recomputation of the orientation of the axes as the epoch
of the model evolves.

One additional class in Figure [2.4] bears discussion here. GMAT supports numerous coordinate systems
that reference bodies that are not celestial objects — specifically coordinate systems that use Lagrange points,
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barycenters, spacecraft, and formations to define the coordinate origins and axes. These coordinate systems
use the ObjectReferencedAxes class to construct the coordinate basis and rotation matrices. The GMAT
Mathematical Specifications|[MathSpec] provide detailed descriptions of how this class operates.

12.2.3 CoordinateSystem and AxisSystem Collaboration

The GMAT Mathematical Specification[MathSpec] includes a flow chart that describes the process of trans-
forming between coordinate systems. This process is performed in the GMAT code using the Coordinate-
Converter class and the public methods of the CoordinateSystem class. When GMAT needs a conversion
from omne coordinate system to another, the method CoordinateConverter: :Convert is called with the
epoch, input state, input coordinate system, output state, and output coordinate system as parameters.
The converted state vector is stored in the output state parameter.

The Convert method calls the conversion method CoordinateSystem: : ToMJ2000Eq on the input coordi-
nate system, followed by CoordinateSystem: : FromMJ2000Eq on the output coordinate system. ToMJ2000Eq
calls the AxisSystem: : RotateToMJ2000Eq method followed by the CoordinateSystem: : TranslateToMJ2000Eq
method, converting the input state from the input coordinate system into Mean of J2000 Equatorial coor-
dinates. Similarly, FromMJ2000Eq calls the CoordinateSystem: : TranslateFromMJ2000Eq method and then
the AxisSystem::RotateFromMJ2000Eq method, converting the intermediate state from Mean of J2000
Equatorial coordinates into the output coordinate system, completing the transformation from the input
coordinate system to the output coordinate system. Each of the conversion routines takes a SpacePoint
pointer as the last parameter in the call. This parameter identifies the J2000 coordinate system origin to
the conversion routine. If the pointer is NULL, the origin is set to the Earth.

The following paragraphs provide programmatic samples of these conversions.

Code Snippets for a Conversion

Figure I2.5] generalized from the GMAT mathematical specification, illustrates the procedure used to im-
plement a transformation from one coordinate system to another. The following paragraphs provide code
snippets with the corresponding function arguments for this process.

When GMAT needs to convert from one coordinate system to another, this method is called:

if (!coordCvt->Convert(epoch, instate, inputCS, outstate, outputCS))
throw CoordinateSystemException("Conversion from " +
inputCS->GetName() + " to " + outputCS->GetName() + " failed.");

This method invokes the calls listed above, like this:

// Code in CoordinateConverter::Convert
if (!inputCS->ToMJ2000Eq(epoch, instate, internalState, J2000Body))
throw CoordinateSystemException("Conversion to MJ2000 failed for " +
inputCS->GetName()) ;

if (YoutputCS->FromMJ2000Eq(epoch, internalState, outState, J2000Body))
throw CoordinateSystemException("Conversion from MJ2000 failed for " +
outputCS->GetName()) ;

The conversion code from the input state to Mean of J2000 Equatorial Coordinates is accomplished using
the calls

// Code in CoordinateSystem::ToMJ2000Eq
if (axes) // axes == NULL for MJ2000Eq orientations
if (laxes->RotateToMJ2000Eq(epoch, instate, internalState, J2000Body))
throw CoordinateSystemException("Rotation to MJ2000 failed for " +
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instanceName) ;
else // Set the intermediate state to the input state
internalState = instate;

if (!TranslateToMJ2000Eq(epoch, internalstate, internalState, J2000Body))
throw CoordinateSystemException("Translation to MJ2000 failed for " +
instanceName) ;

and the conversion from Mean of J2000 Equatorial Coordinates to the output state is performed using
these calls:

// Code in CoordinateSystem: :FromMJ2000Eq
if (!TranslateFromMJ2000Eq(epoch, internalstate, internalState, J2000Body))
throw CoordinateSystemException("Translation from MJ2000 failed for " +
instanceName) ;

if (axes) // axes == NULL for MJ2000Eq orientations
if (laxes->RotateFromMJ2000Eq(epoch, internalState, outstate, J2000Body))
throw CoordinateSystemException("Rotation from MJ2000 failed for " +
instanceName) ;
else // Set the output state to the intermediate state
outstate = internalState;

12.2.4 The SpacePoint Class

In general, coordinate systems are defined in reference to locations and directions in space. Many of the
coordinate systems used in GMAT have the direction fixed based on an external reference — for example, the
MJ2000Eq system has the z-axis pointed along the Earth’s rotation axis at the J2000 epoch and the x-axis
aligned with the vernal equinox at the same epoch. GMAT also supports coordinate systems constructed in
reference to objects internal to the GMAT — typically a planet, the Sun, a moon, or a spacecraft can be used,
as can special points in space like Lagrange points or the barycenter of a multi-body system. The coordinate
system classes need to be able to access position and velocity data about these objects in a generic fashion.
GMAT has a class, SpacePoint, that provides this access. SpacePoint is the base class for all of the objects
that model location data in the solar system, as is shown in Figure The SpacePoint class is described
in more detail in Chapter 1]

12.3 Configuring Coordinate Systems

12.3.1 Scripting a Coordinate System

The script commands used to create a coordinate system object in GMAT are defined in the GMAT Math-
ematical Specifications[MathSpec]. Coordinate System scripting is performed using the following lines of
script:

Create CoordinateSystem csName
GMAT csName.Origin = <SpacePoint name>;
GMAT csName.Axes = <Axis type>;
GMAT csName.Primary = <Primary SpacePoint name, if needed>;
GMAT csName.Secondary = <Secondary SpacePoint name, if needed>;
GMAT csName.Epoch.<Format> = <Epoch data, if needed>;

% Only two of these three can exist for a given coordinate system;
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Figure 12.6: The SpacePoint Class Hierarchy

% see the coordinate system table for more information
GMAT csName.XAxis = <$\pm$R, $\pm$V, or $\pm$N>;
GMAT csName.YAxis = <$\pm$R, $\pm$V, or $\pm$N>;
GMAT csName.ZAxis = <$\pm$R, $\pm$V, or $\pm$N>;

The fields in angle brackets are used to set the parameters that define the coordinate system. Table [2.1]
provides a brief description of these fields; more details are available in [MathSped].

In the following paragraphs, the interactions between the script interpreter subsystem and the coordinate
system classes are described.

Script Interpreter Actions

In GMAT, the ScriptInterpreter reads each line of script and sets up the corresponding objects. The lines
of script above map to calls made in the ScriptInterpreter code, as described in the following text.

The Create line causes the ScriptInterpreter to call the CoordinateSystemFactory and requests a Coor-
dinateSystem instance:

// In the Interpreter subsystem
GmatBase *csInstance = moderator->CreateCoordinateSystem("CoordinateSystem", "csName");

The resulting coordinate system is registered with the configuration manager.
The Origin line sets the originName parameter on this instance:

// First determine that the parm is a string
Gmat: :ParameterType type = csInstance->GetParameterType({}‘‘0rigin’’);

// Here type is a string, so this is called:
csInstance->SetStringParameter ({}‘‘0rigin’’, <SpacePoint name>);

The Axes line creates an instance of the AxisSystem and passes it to the coordinate system:
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Table 12.1: Coordinate System Parameters

Parameter Required/ Op- | Allowed Values Description
tional

Origin Required Defines the location of the coordinate sys-
Any Named tem origin.
SpacePoint

Axes Required Defines the orientation of the coordinate
Equator, MJ2000Ec, | 2%¢S M space.
MJ2000Eq, TOEEq,
MOEEq, TODEq,
MODEq, TOEEC,
MOEEc, TODEc,
MODEc, Fixed,
ObjectRefernced

Primary Optional Defines the primary body used to ori-
Any Named ent axes for systems that need a primary
SpacePoint body.

Secondary Optional Defines the secondary body used to orient
Any Named axes for systems that need a secondary
SpacePoint body.

Epoch Optional Any GMAT Epoch Sets the reference epoch for systems that
need a reference epoch.

XAxis Optional +R, £V, +N Used for ObjectReferences axes only; two
of the three axes are set, and one must
reference £N.

YAxis Optional +R, £V, =N Used for ObjectReferences axes only; two
of the three axes are set, and one must
reference £N.

7.Axis Optional +R, £V, +N Used for ObjectReferences axes only; two
of the three axes are set, and one must
reference £N.

93
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// First determine that the parm is an internal object
Gmat: :ParameterType type = csInstance->GetParameterType({}‘‘Axes’’);

// Here type is an object, so this is called:
GmatBase {x}axesInstance = moderator->CreateAxisSystem(<Axis type>, {}¢¢’’);

// Then the object is set on the coordinate system
csInstance->SetRefObject (axesInstance) ;

The Primary line sets the primary body on the AxisSystem instance. This is done by passing the data
through the CoordinateSystem object into the AxisSystem object:

// First determine that the parm is a string
Gmat: :ParameterType type = csInstance->GetParameterType({}‘‘Primary’’);

// Pass the string to the coordinate system
csInstance->SetStringParameter ({}* ‘Primary’’, <SpacePoint name>);

// In CoordinateSystem, this parameter is passed to the AxisSystem:
axes->SetStringParameter ({}¢ ‘Primary’’, <SpacePoint name>);

The Secondary line is treated similarly to the primary line:

// First determine that the parm is a string
Gmat: :ParameterType type = csInstance->GetParameterType({}‘‘Secondary’’);

// Pass the string to the coordinate system
csInstance->SetStringParameter ({}*‘Secondary’’, <SpacePoint name>);

// In CoordinateSystem, this parameter is passed to the AxisSystem:
axes->SetStringParameter ({}¢‘Secondary’’, <SpacePoint name>);

The Epoch line is handled like in the Spacecraft object, and the XAxis, YAxis and ZAxis lines are treated
as string inputs, like the Primary and Secondary lines, above.

12.3.2 Default Coordinate Systems

GMAT defines several coordinate systems by default when it is initialized. These systems are listed in Table
122

12.4 Coordinate System Integration

Sections [2.2] and [2.3] describe the internal workings of the GMAT coordinate systems, but do not explain
how the coordinate system code interacts with the rest of GMAT. This section outlines that information.
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Table 12.2: Default Coordinate Systems defined in GMAT

| Name | Origin | Axis System | Comments \

EarthMJ2000Eq | Earth MJ2000 Earth Equator The default coordinate system for
GMAT

EarthMJ2000Ec | Earth MJ2000 Ecliptic

EarthFixed Earth Body Fixed The Earth fixed system is used
by the gravity model for full field
modeling

BodyFixed Other celestial | Body Fixed Fixed systems used by the grav-

bodies ity model for full field modeling

at other bodies

12.4.1 General Considerations

GMAT uses coordinate systems in several general areas: for the input of initial state data, internally in the
impulsive and finite burn code, force models and propagation code, in the calculation of parameters used to
evaluate the behavior of the model being run, and in the graphical user interface (GUI) to display data as
viewed from a coordinate system based perspective.

12.4.2 Creation and Configuration
Coordinate System Creation

Coordinate systems are created through a series of interactions between the GMAT interpreters, the Mod-
erator, and the Factory system. Figure [[27 shows the sequence followed by the ScriptInterpreter when a
coordinate system is configured from a script. The procedure is similar when the GUI configures a coordinate
system, with one exception. The ScriptInterpreter translates a script file a line at a time, so it needs to look
up the CoordinateSystem object each time it is referenced in the script. The GUI configures the coordinate
system from a single panel, so the coordinate system object does not need to be found each time a parameter
is accessed.

Startup Considerations

When a user starts GMAT, the executable program creates a singleton instance of the Moderator. The
Moderator is the core control module in GMAT; it manages the creation and deletion of resources, the
interfaces between the core components of the system and the external interfaces (including the GUI and
the scripting engines), and the execution of GMAT simulations. When the Moderator is created, it creates
a variety of default resources, including the default factories used to create the objects in a simulation. The
factories that get created include the CoordinateSystemFactory.

After it has created the factories and constructed the default solar system, the Moderator creates the
default coordinate systems listed in Table[[2.2] following a procedure like the one shown in Figure[[2.7l These
coordinate systems are registered with the Configuration Manager using the names in the table. Users can
use these coordinate systems without any taking any additional configuration actions.

12.4.3 Sandbox Initialization

When a user runs a mission sequence, the Moderator takes the following sequence of actions 2:

1. Send the current SolarSystem to the Sandbox for cloning

2The description here references a Sandbox for the run. The Moderator can be configured to manage a collection of
Sandboxes; in that case, the actions described here are applied to the current Sandbox from that collection.
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Load the configured objects one at a time into the Sandbox. These objects are cloned ? into the
Sandbox.

The Sandbox is initialized.

The Mission is executed.

critical piece for successful execution of a GMAT mission is the third step. When the Sandbox is

initialized, the following actions are executed:

1.

The

The local solar system object is set for all of the objects that need it.
Reference object pointers are set on objects that use them.

The objects are initialized.

Parameters are configured.

The command sequence is configured.

(a) The object table is passed to each command.
(b) The solar system is passed to each command.

(¢) The command is initialized.

coordinate system objects are fully initialized and ready for use by the end of the step Bl Commands

that use the coordinate system objects have the object associations set in step Bd

12.4.4 Initial States

Users need to set the locations and initial motion of spacecraft, ground stations, and other physical entities
modeled in GMAT using a coordinate system that makes this data simple to specify. For this reason, GMAT
lets users select all or a portion of the coordinate system needed for these objects.

3The current build of GMAT does not fully implement cloning for the configured objects. This issue is being corrected.
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Spacecraft

The initial state for a spacecraft is expressed as an epoch and six numerical quantities representing the space-
craft’s location and instantaneous motion. These quantities are typically expressed as either six Cartesian
elements — the x, y, and z components of the position and velocity, six Keplerian elements — the semimajor
axis, eccentricity, inclination, right ascension of the ascending node, argument of pariapsis, and the anomaly
in one of three forms (true, mean, or eccentric), or one of several other state representations. The element
representation depends on the coordinate system used. Some representations cannot be used with some co-
ordinate systems — for example, the Keplerian representation requires a gravitational parameter, p = GM, in
order to calculate the elements, so coordinate systems that do not have a massive body at the origin cannot
be used for Keplerian elements. For these cases, GMAT reports an error if the element type is incompatible
with the coordinate system.

Ground Stations and Other Body Fixed Objects

Ground station objects and other objects connected to physical locations on a body are expressed in terms
of the latitude, longitude, and height above the mean ellipsoid for the body. The coordinate system used
for these objects is a body fixed coordinate system. Users can specify the central body when they configure
these objects. The body radius and flattening factor for that body are used to calculate the mean ellipsoid.
Latitude is the geodetic latitude of the location, and longitude is measured eastwards from the body’s prime
meridian.

GMAT does not currently support ground stations or other body fixed objects. This section will be
updated when this support is added to the system.

12.4.5 Forces and Propagators

Internal states in GMAT are always stored in a Mean of J2000 Earth-Equator coordinate system. The origin
for this system is set to either a celestial body (i.e. the Sun, a planet, or a moon), a barycenter between
two or more bodies, or a Lagrange point. The propagation subsystem in GMAT allows the user to specify
this origin, but no other coordinate system parameters. Propagation is performed in the Mean of J2000
Earth-Equator frame located at the specified origin.

Individual forces in the force model may require additional coordinate system transformations. These
transformations are described in the next section.

Coordinate Systems Used in the Forces

GMAT contains models for point mass and full field gravity from both a central body and other bodies,
atmospheric drag, solar radiation pressure, and thrust from thrusters during finite maneuvers. Table
identifies the coordinate system used for each force. Users set the point used as the origin for the force
model. This point is labeled r, in the table. Forces that require a central body reference that body as rep in
the table. Users also specify the coordinate system used for finite maneuvers. All other coordinate systems
are set up internally in the force model code, and managed by the constituent, forces.

Transformations During Propagation

GMAT’s propagators consist of a numerical integrator and an associated force model. Each force model is
a collection os individual forces that get added togehter to determine the net acceleration applied to the
object that is propagated. The preceding section defined the coordinate systems used by each of these forces.
Figure 2.8 shows the procedure that is followed each time the force model calculates the acceleration applied
to an object.

The force model calls each force in turn. As a force is called, it begins by transforming from the
internal Mean of J2000 equatorial coordinate system into the coordinate system required for that force. The
acceleration from the force is then calculated.
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Table 12.3: Coordinate Systems Used by Individual Forces

] Force \ Coordinate System \ Notes ‘
Point Mass Gravity ro centered MJ2000 Point mass forces use the default representations
Earth Equator
Full Field Gravity rep centered Body Fixed | Full field models use the body fixed system to cal-

culate latitude and longitude data, and calculate
accelerations in the MJ2000 frame based on those

values.
Drag rep centered MJ2000 Drag forces set the atmosphere to rotate with the
Earth Equator associated body, so the reference frame remains
inertial (i.e. MJ2000 based).
Solar Radiation Pressure | ro centered MJ2000 Solar Radiation Pressure calculations are per-
Earth Equator formed in MJ2000 coordinates
Finite Maneuver Thrust | Any Defined Coordinate | Finite maneuvers determine the thrust direction
System, user specified based on the thrust vector associated with the en-

gines. The spacecraft are aligned with this coordi-
nate system. A future build will add an additional
transformation to allow specification of the space-
craft’s attitude in this frame.
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Figure 12.8: Control Flow for Transformations During Propagation
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12.4.6 Maneuvers

The impulsive and finite burn models are used to simulate thruster actions on a spacecraft. Maneuvers are
applied either as an impulsive delta-V or as an acceleration in the force model. In either case, the coordinate
system related operations in the maneuver object are the same: the basis vectors for the coordinate system
are calculated in the MJ2000 frame, the magnitude of the change in the velocity is calculated for the maneuver
(resulting in a delta-V magnitude for impulsive maneuvers, or the time rate of change of velocity for finite
maneuvers), and the resultant is projected along the basis vectors using attitude data in the maneuver object.
Figure illustrates this flow.

12.4.7 Parameters

Many of the parameters that GMAT can calculate are computed based on the coordinate system of the
input data; in some cases this dependency uses the full coordinate system, and in other cases, it uses the
origin or central body of the coordinate system. The Parameter subsystem contains flags for each parameter
taht are used to indicate the level of coordinate system information required for that parameter. These flags
indicate if the parameter is specified independently from the coordinate system, depends only on the origin
of a coordinate system, or depends on a fully specified coordinate system.

12.4.8 Coordinate Systems and the GUI
OpenGL ViewPoints

The OpenGL visualization component in the first three GMAT builds set the Earth at the center of the display
view and allowed users to move their Earth-pointing viewpoint to different locations. The incorporation
of coordinate systems into the code opens GMAT to a greatly expanded visualization capability in this
component. Users can set the viewing direction to point towards any SpacePoint or an offset from that
direction. Users can also set the viewpoint location to either a point in space, to the origin of any defined
coordinate system, or to locations offset from any specified SpacePoints. The latter capability allows the
OpenGL view to follow the motion of the entities modeled in GMAT.

New Panels

GMAT needs a new GUI panel used to configure coordinate system objects.

Panel Changes

Several of the existing GUI panels in GMAT will change once the Coordinate System classes are functional.
Both the report file and the X-Y plot components use parameter data to produce output. The configuration
panels for these elements needs the ability to specify either the coordinate system or the origin for the calcu-
lated data that requires these elements. One way to add this capability to the GUI is shown in Figure
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Figure 12.10: The Updated Parameter Subpanel

As different parameters are selected, the “Coordinate System” and “Coordinate Origin” comboboxes become
active or disabled (“grayed out”), depending on the needs of the selected parameter.

The propagator subsystem needs information about the global origin for the forces in a force model.
Figure [2.17] shows one way to add this data to the panel.

The OpenGL panel needs to be updated to allow configuration of the capabilities described in Section
248 Users can use the settings on this panel to specify both the coordinate system used to plot the
mission data and the location and orientation of the viewpoint used to observe these data. In some cases,
the viewpoint will not be a fixed point in space — for example, users will be able to view a spacecraft’s
environment in the simulation by specifying the location and orientation of the viewpoint relative to the
spacecraft in a spacecraft centered coordinate system, and thus observe how other objects move in relation
to that spacecraft.

12.5 Validation

In this section, several tables are presented that show the data for a single state in several different coordinate
systems. GMAT tests will be run that transform between these systems and validates that the conversions
are in agreement with the data in the tables to an acceptable level of precision. The test data were generated
in Astrogator by GSFC, Code 595. This output should be in agreement with GMAT results to at least one
part in 10*2. (Subject to change once tests are run — seems like a good value as a starting point.)

12.5.1 Tests for a LEO
Table 24 lists the expected state data for a spacecraft orbiting near the Earth.



12.5. VALIDATION

2 DefaultProp

Integrator
Type

Initial Step Size
Accuracy

Min Step Size
Max Step Size

Max Step Atkempts

S

]

&0

| sec

| 9,999999999999999-012

| 0.001

| sec

| 2700

| sec

|50

Force Model

Error Contral R5a5tep ~
Central Body

Primary Bodies

Fath v][Eath

| [ Select ]

Gravity Field

Type | J6M-2

w | Degree Order EI

101

Atmosphere Model

Magnetic Field

[ Joe=[]

Point Masses

I

Select

[Juse Solar Radiation Pressure

Cancel

Figure 12.11: Addition of the Propagation Origin

Table 12.4: Coordinate Conversions for an orbit near the Earth

A

LEO State

»och:

\ UTC Gregorian

|

UTC Julian ‘

Ephemeris Time

\ 1 Jan 2005 12:00:00.00

|

2453372 \

2453372.00074287

yordinate System

\ X

\ Y

|

Z

| Ve |

Vy

vz

rth  Centered
)00 Equator

Mean

15999.999999999998

0.0000000000000

0.0000000000000

0.0000000000000

3.8662018270519716

3.866201827(

rth Centered Fixed

3100.7006422193112

15696.674760971226

7.54822029656669

-2.6485022470204602

0.5213224286561129

3.866343176¢

15999.988100569937

19.513619701949061

0.0163246416692983

-0.0062037647908650

5.0850309969931660

2.0093417847

rth  Centered  Mean
liptic of Date
rth  Centered  Mean

liptic of J2000

15999.999999999998

0.0000000000000

0.0000000000000

0.0000000000000

5.0850575916827729

2.009284057¢

rth Centered Mean of
te

15999.9881005699370

17.8969907643261870

7.7768465297859297

-0.0062037647908650

3.8661983573941092

3.866200319:
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Table 12.5: Coordinate Conversions for an orbit near the Earth/Moon-Sun L2 Point

A L2 State
poch: \ UTC Gregorian \ UTC Julian \ Ephemeris Time
‘ 25 Sep 2003 16:22:47.94 ‘ 2452908.18249931 ‘ 2452908.18324218
‘oordinate Sys- X Y Z Va Vy V.
om

arth Centered Mean 1152413.9609139508 164482.90400985131 | -270853.37069837836 | -0.0237491328055502 | 0.5463496092937017

2000 Equator

0.18969527053

n-Earth/Moon
arycenter L1

2659568.8530356660 | -467.97516783879695 | -314259.10186388291 | -0.0062197634008832 | 0.3610507604664427

-0.04258067111

mn-Earth 1.2

-352659.29964214563 | -0.0002161438986659 | -313927.71991658572 | 0.0027515868356648 | 0.3488514802312706

-0.0432916179"

olar System  Barycen- 151524360.68432158 4848014.2434389694 1751879.7152567047 | -1.6146582474186386 | 27.776726415749529
r Mean J2000 Earth

quator

11.9956571743

12.5.2 Tests for a Libration Point State

Table [[2.5 lists the expected state data for a spacecraft flying near the Earth-Sun.

12.5.3 Tests for an Earth-Trailing State

Table [[2.6] lists the expected state data for a deep space object trailing behind the Earth.

12.6 Some Mathematical Details

This section will probably appear in some form in the mathematical specifications. I'm leaving
it here until I can confirm that assumption.

A spatial coordinate system is fully specified by defining the origin of the system and two orthogonal
directions. Given these pieces of data, space can be gridded into triplets of numbers that uniquely identify
each point. The purpose of this section is to provide some guidance into how to proceed with the definition
of the coordinate system axes once the origin and two directions are specified.

12.6.1 Defining the Coordinate Axes

The coordinate system axes are defined from the two orthogonal directions in the system specification. These
directions are given two of the three labels X, Y, and Z. These labels are used to define the corresponding
directions for the coordinate system. The third axis is calculated by taking the inner product of the other
two axes, using

X Y x 2
Y = ZxX
Z XxY (12.1)

12.6.2 Setting Directions in GMAT

The principal directions for a coordinate system are set in GMAT by specifying a primary direction and a
secondary direction. The specified secondary axis need not be orthogonal (i.e. perpendicular) to the primary
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Table 12.6: Coordinate Conversions for an Earth-Trailing state
An Earth-Trailing State

och: | UTC Gregorian | UTC Julian | Ephemeris Time

\ 1 Jan 2012 00:00:00.00 \ 2455927.5 \ 2455927.50074287
ordinate Sys- X Y Z V. Vy V.
n
th Centered Mean 18407337.2437560 146717552.364272 2436998.6080801622 -29.85775713588113 3.7988731566283533 -0.088353532

00 Equator

th Centered Mean

iptic of Date

18010745.506277718

135634904.81496251

-56121251.238084592

-29.8677194647804920

3.3629312165175098

-1.592147103

th Centered Mean

iptic of J2000

18407337.2437560

135580104.86024788

-56124988.196549937

-29.8577571358811300

3.4502529604822207

-1.592167741

ar System  Barycen-
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axis. Given a primary direction P and a secondary direction S, the primary axis is oriented along a unit

vector given by

P= (12.2)

The unit vector defining the secondary axis is constructed by projecting the secondary direction S into the
plane perpendicular to the primary direction, and unitizing the resulting vector. This is done by calculating

(12.3)

In general, two points are needed to specify a direction.



Chapter 13

SpaceObjects: Spacecraft and
Formation Classes

Darrel J. Conway
Thinking Systems, Inc.

The Spacecraft and Formation classes used in GMAT are the core components studied when running the
system. Instances of these classes serve to model spacecraft state information as the model evolves. They
also serve as containers for hardware components used to extend the model to include finite burn analysis,
contact calculations, spatial mass distributions, and full six degree of freedom modeling. The core elements
of this modeling are presented in this chapter. The hardware extensions are documented in Chapter [4]

13.1 Component Overview

The central nature of Spacecraft and Formation objects in GMAT’s mission model makes the design of the
supported features of these classes potentially quite complex. The state data and related object properties
required for these objects must meet numerous requirements, including all of the following:

1. Supply State information to force model

e Origin dependent data, MJ2000 Earth Equator orientation
e Cartesian states

e «Future» Equinoctial states
2. Support input representations

e Convert between different representations

e Preserve accuracy of input data
3. Support coordinate systems

e Support internal MJ2000 Cartesian system for propagation
e Allow state inputs in different systems

e Show state in different systems on demand
4. Support time systems

e TAI ModJulian based internal time system
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e Support ModJulian
e Support Gregorian

e Convert all time systems
5. Support mass and ballistic properties

e Basic spacecraft mass
Cd, Cr, Areas

Mass in tanks

«Future» Mass depletion from maneuvers

«Future» Moments of Inertia

6. Support tanks and thrusters

e Add and remove tanks and thrusters
e «Future» Deplete mass during finite burn

e «Future, partially implemented» Model burn direction based on thruster orientations (BCS based)
7. GUI

e Provide epoch information
— Epoch representation string
— Epoch in that representation
— Supply different representation on request
— Preserve precision of input epoch data
e Provide state information

— State type string

State in that representation

— Provide units and labels for state elements
— Convert to different representations

— Preserve precision of input state data

e Provide support for finite maneuvers
8. Scripting

e Support all GUI functionality from scripting
e Provide element by element manipulations of state data

e Allow element entry for data not in the current state type without forcing a state type change
9. Provide Range Checking and Validation for all Editable Data
10. «Future» Support attitude

e Allow attitude input

e Convert attitude states
11. «Future» Support sensors

e Add and remove

e Conical modeling
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o Masking

e Contact information based on sensor pointing (BCS based)

GMAT defines a base class, SpaceObject, for the common elements shared by spacecraft and formations.
The primary feature of the SpaceObject class is that it provides the data structures and processes necessary
for propagation using GMAT’s numerical integrators and force models. Classes are derived from this base
to capture the unique characteristics of spacecraft and formations. Additional components that interface
with the propagation subsystem should be added to GMAT in this hierarchy; the propagation subsystem is
designed to work at the SpaceObject level.

The SpaceObject subsystem uses three categories of helper classes: PropStates, Converters, and Hard-
ware. In one sense, the SpaceObject classes can be viewed as containers supporting the features needed to
model objects in the solar system that evolve over time through numerical integration in GMAT.

The core data needed for propagation is contained in the PropState helper class. Each SpaceObject
has one PropState instance used to manage the data directly manipulated by the numerical integrators.
The PropState manages the core epoch and state data used by the propagation subsystem to model the
SpaceObjects as they evolve through time. Details of the PropState class are given in Section 13.2.3

Each SpaceObject includes components used to take the data in the PropState and convert it into a
format appropriate for viewing and user interaction. The conversion subsystem described in Section
provides the utilities needed to convert epoch data, coordinate systems, and state element representations.
The conversion routines needed to meet the requirements are contained in a triad of conversion classes:
TimeConverter, CoordinateConverter, and RepresentationConverter, that share a common base that enforces
consistent interfaces into the conversion routines. These conversion routines interact with the state and epoch
data at the SpaceObject level on GMAT; therefore, conversions on a Formation object are performed using
identical calls to conversions for individual Spacecraft. In other words, the state or epoch data for a Formation
is transformed for all members of the Formation with a single call, and that call looks identical to the same
transformation when performed on a single spacecraft.

The spacecraft as modeled in GMAT is a fairly simple object, consisting of several key properties required
to model ballistics and solar radiation forces. The state complexities are managed in the SpaceObject base
class. Additional spacecraft hardware — fuel tanks, thrusters, and eventually sensors and other hardware
elements — are modeled as configurable hardware elements that are added as needed to Spacecraft objects.
Hardware elements that contribute to the spacecraft model are broken out into separate classes modeling
the specific attributes of those elements. Users configure fuel tanks and thrusters as entities that the space-
craft uses for finite maneuvering. These elements include structures that allow location and orientation
configuration in the Spacecraft’s body coordinate system, so that detailed mass and moment data can be
calculated during the mission. A future release of GMAT will add support for attitude calculations and,
eventually, sensors, so that attitude based maneuvering, full six degree of freedom modeling, and detailed
contact modeling can be incorporated into the system. These components are discussed in more detail in
Chapter 4

The remainder of this chapter details the design of the components that implement the core SpaceObject
classes, Spacecraft and Formation. It includes the design specification for the converters GMAT uses to
support these classes, along with a discussion of how these elements interact to provide the conversions
needed to meet the system requirements.

13.2 Classes Used for Spacecraft and Formations

Figure I3l shows the details of the classes derived from SpacePoint that are used when modeling spacecraft
and formations of spacecraft. The class hierarchy for the spacecraft subsystem consists of three core classes:
the SpaceObject class, which contains the common elements of the subsystem, the Spacecraft class, which
acts as the core component for all spacecraft modeling, and the Formation class, which collects spacecraft
and subformations into a single unit for modeling purposes. This subsystem also contains a helper class, the
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PropState, which encapsulates the data that evolves as the model is run, simplifying the interface to the
propagation subsystem. In addition, two of the hardware classes — Thruster and FuelTank — are shown in
the figure.

13.2.1 Design Considerations

The central role of the Spacecraft and Formation SpaceObjects in GMAT’s models drives several design
considerations related to the consistent display and use of these objects in the model. Before presenting the
design of the classes used for these objects, several of the considerations that went into this design will be
discussed.

Data Consistency Philosophy

The SpaceObject subsystem follows a convention that requires that the state data in the PropState always
stays correct with respect to the model. In other words, once some data in the state vector is set, changes to
other properties of the SpaceObject do not change the state with respect to the model. That means that if
the internal origin changes for a SpaceObject, the data in the state vector is translated to the new location,
and the velocity data is updated to reflect the speed of the SpaceObject with respect to the new origin.
In order to change the state of a SpaceObject in GMAT’s model, the actual state data must be changed.
Changing the coordinate system or origin does not change the position or velocity of the SpaceObject with
respect to other objects in the space environment; instead, it changes the values viewed for the SpaceObject
by updating the viewed data in the new coordinate system. The epoch also remains unchanged upon change
of the coordinate system, the representation, or elements of the state vector.

Epoch data is simpler (because it is independent of location in the space environment), but follows
the same philosophy. Internally the epoch data is stored in the TAI modified Julian time system. Users
can view the epoch data in any of GMAT’s defined time systems. Changing the time system does not
change the internal epoch data, only the way that data is presented. Epoch data is changes by directly
updating the epoch. Upon change of epoch, the state of the spacecraft remains unchanged with respect to
the SpaceObject’s origin. However, a side effect of changing the epoch on a SpaceObject is that the locations
of the objects in the solar system may shift, so the location of the SpaceObject with respect to other solar
system objects may be different.

Data Presented to the User

Each SpaceObject includes data members used to track the current default views of the data. The epochType
member is used to store the current format for viewing the epoch data. State data requires two components
to fully define the view of the state data: the coordinateType member tracks the coordinate system used to
view the state data, and the stateType member the representation for that view of the state data. These
three members — epochType, coordinateType, and stateType — define the views used when a SpaceObject
is written to a file, displayed on a GUI panel, or accessed as strings for other purposes.

Access to the state and epoch data as Real values returns the internal data elements: the epoch is
returned as a TAI modified Julian value, and the state data is returned as Cartesian Mean-of-J2000 Earth
equatorial data, referenced to the origin specified for the SpaceObject. The SpaceObjects provide methods
that retrieve the data in other formats as well; the values described here are those returned using the default
GetRealParameter methods overridden from the GmatBase class.

State data can be read or written either element by element or as a vector of state data. The former
approach is taken by the Script Interpreter when setting a spacecraft’s state as expressed element-by-element
in the script, like shown here:

Create Spacecraft sat;
sat.StateType = Keplerian;
sat.SMA = 42165.0;
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Figure 13.1: Class Structure for Spacecraft and Formations
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sat.ECC 0.0011;
sat.INC 0.25;
sat.RAAN = 312.0;
sat.AOP = 90.0;
sat.TA = 270.0;

The GUI works with the state data as a single entity, rather than element-by-element. Accordingly, the panel
that displays spacecraft state data accesses this data with a single call that returns the full state datal.

Spacecraft states can be displayed in many different representations. Rather than code text descriptions
for the different components of each representation into the representation converter, each representation
includes structures to provide the labels and units used for the components. The SpaceObjects provide
methods to retrieve these values.

Some state representations have optional settings for specific elements. For example, the Keplerian
representation can specify the anomaly in one of several forms: elliptical states can specify a true anomaly,
eccentric anomaly, or mean anomaly, while hyperbolic orbits use either the hyperbolic anomaly or a mean
anomaly defined off of the hyperbolic anomaly. Representations that support this type of option also provide
a method, SetOption(), to set the option. SpaceObjects provide methods to access these methods as well,
so that the representation options can be set through calls to the SpaceObject.

13.2.2 The SpaceObject Class

GMAT’s force model constructs a state vector that is manipulated by the system’s numerical integrators
to advance the state vector through time, as described in Chapter The core building block for the
construction of this state vector is the SpaceObject, a class used in GMAT as the base class for Spacecraft
and Formations?, as shown in the class diagram, Figure [3.11

The SpaceObject class supports all operations and data elements that Spacecraft and Formations share
in common. In particular, the vector used by the propagators to model evolution over time is encapsulated
in the SpaceObject class. Conversions that involve the data in this vector are performed at the SpaceObject
level. The SpaceObject class maintains pointers to the elements that are necessary for these conversions.

SpaceObject instances also act as containers for several helper classes, responsible for performing coor-
dinate system conversions, state transformations between different state representations, and time system
conversions that allow the object’s epoch information to be presented to users in common time systems,
described in Section The SpaceObject class implements several methods that call those components
to supply requested data. The returned data from these calls is always an std::string or StringArray. The
SpaceObject class manages the underlying Real data internally, and uses these as checkpoints to manage the
precision of the output, to validate that the data is consistent, and to ensure that all data presented to the
users is consistent with the internal data structures in the SpaceObject.

Class Attributes

e PropState state: The container for the raw state and epoch data that gets propagated. Details of
the PropState class are provided in Section [13.2.3]

e bool isManeuvering: A flag used to indicate if there is a finite burn active for any of the members
of the SpaceObject.

LA future release of GMAT will provide a scripting option to set the full state in a single script line, using the format

Create Spacecraft sat;
sat.StateType = Keplerian;
sat.State = [42165.0, 0.0011, 0.25, 312.0, 90.0, 270.0]1;

2A future release will include the State Transition Matrix (STM) in the SpaceObject class hierarchy.
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std::string originName: The name of the SpacePoint that is the origin of the data contained in the
SpaceObject’s PropState.

SpacePoint *origin: A pointer to the SpacePoint that is the origin of the data in the state.

bool parmsChanged: A flag used to indicate if the size or data contained in the PropState has
changed, so that consumers of those data can perform updates.

SpacePoint *origin: The origin used for the state data.

CoordinateSystem *baseCoordinates: The coordinate system used for the state data. This co-
ordinate system is a Mean-of-J2000 Earth-Equator system, with the origin set to the SpaceObject’s
origin.

std::string epochType: Text descriptor for the current epoch type used for display.
TimeConverter timeConverter: The time converter used by this SpaceObject.

«Future» TimeBase* baseTimeSystem: The time system matching the epochType.
std::string coordinateType: Text descriptor for the current coordinate system used for display.

CoordinateConverter coordConverter: The coordinate system converter used by this SpaceOb-
ject.

CoordinateSystem* baseCoordinates: The coordinate system associated with the SpaceObject’s
PropState.

CoordinateSystem* viewCoordinates: The coordinate system associated with the SpaceObject’s
coordinateType, used for display.

std::string stateType: Text descriptor for the current state representation used for display.
RepresentationConverter repConverter: The representation converter used by this SpaceObject.
«Future» Representation* baseRepresentation: The representation used for display.

std::string textEpoch: The most recently accessed string version of the epoch. This string is only
updated if the epoch field is accessed as a string using GetEpochString(), and the epoch or epoch type
has changed since the last access.

StringArray textState: The most recently accessed string version of the state. This string array is
only updated if the state is accessed as a string array using GetStateString(), and the coordinate type
or representation has changed since the last access.

Methods

PropState & GetState(): Returns the internal PropState.

Real GetEpoch(): Returns the TAI modified Julian epoch of the SpaceObject, obtained from the
PropState.

Real SetEpoch(Real ep): Sets the SpaceObject’s epoch to a new value. The input parameter is the
new TAT epoch. This mathod passes the new epoch into the PropState for storage.

bool IsManeuvering(): Returns a flag indicating if a finite burn is currently active for the SpaceOb-
ject.
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e void IsManeuvering(bool mnvrFlag): Sets the flag indicating the presence of a {inite burn.

e bool ParametersHaveChanged(): Returns a flag indicating that the state data has been changed
outside of the propagation subsystem, and therefore the states need to be refreshed.

e void ParametersHaveChanged(bool flag): Method used to indicate that an external change was
made, and therefore states should be refreshed before propagating.

e std::string GetOriginName(): Returns the name of the SpacePoint used as the origin of the state
data.

e void SetOriginName(const std::string &cbName): Sets the name of the origin used for the state
data.

e void SetOrigin(SpacePoint *cb): Sets the SpacePoint corresponding to the origin of the state
vector. The SpacePoint passed in the parameter cb is the new origin, and gets set on the base
coordinate system as its origin.

e Rvector6 GetMJ2000State(A1Mjd &atTime): Returns the Cartesian state relative to the SpaceOb-
ject’s J2000 body?.

e Rvector3 GetMJ2000Position(A1Mjd &atTime): Returns the Cartesian position relative to the
SpaceObject’s J2000 body.

e Rvector3 GetMJ2000Velocity(A1Mjd &atTime): Returns the Cartesian velocity relative to the
SpaceObject’s J2000 body.

e bool SetCoordSystem(CoordinateSystem™* coordsys): Sets the viewCoordinates member to the
input coordinate system.

e std::string GetEpochString(std::string toTimeType): Returns the current epoch in string form,
in the format in the toTimeType input. If toTimeType is an empty string, epochType is used as the
format for the output.

e StringArray GetStateString(std::string toType, std::string toCoords, CoordinateSystem*
toCS): Returns the SpaceObject state in the representation specified by toType, in the coordinate
system set by toCoords, using the internal coordinate converter and the input coordinate system, toCS.
If toCS is NULL, the coordinate converter locates the required coordinate system. If, in addition,
toCoords is an empty string, viewCoordinates is used for the output coordinate system. If the toType
is also an empty string, the baseRepresentation is used.

e bool SetEpochFromString(std::string epochString, std::string timeType): Sets the epoch in
the PropState using the input epochString, which is formatted using the input timeType.

e bool SetStateFromString(StringArray stateString, std::string fromType, std::string from-
Coords, CoordinateSystem* fromCS): Sets the state in the PropState using the data in the
stateString array, which has the representation specified in the fromType string in coordinate system
fromCoords, which has an instance in the fromCS input.

e StringArray GetStateLabels(): Returns a string array containing the labels identifying the state
elements.

e StringArray GetStateUnits(): Returns a string array containing the units for the state elements.

e void Synchronize(): Method used to fill the textEpoch and textState from the data in the PropState.

3The current GetMJ2000 methods take an a.1 epoch as the epoch for the calculation. A future release will change this call
to use TAI epochs.
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13.2.3 The PropState Class

All SpaceObjects contain a member PropState element that is designed to encapsulate all data needed to

propagate the SpaceObject. This member class is used to provide the single state vector propagated as the

core component seen by GMAT’s propagators. The PropState objects can contain data for a single spacecraft,

multiple spacecraft (typically flown in a Formation), and related mass depletion and state transition matrix

data. The propagator subsystem ensures that these data are treated appropriately during propagation.
Each PropState instance defined the following data members and methods:

Class Attributes

e Real epoch: The current epoch for the state. This value is a TAT modified Julian value, and is used
in the force model to specify the epoch for force evaluations.

e Real* state: The state vector that gets propagated.

e Integer dimension: The total number of elements in the state vector.

Methods

e Real &operator[](const Integer el): Provides element by element access to the state vector, so
that the components can be set using the same syntax as is used to set C++ array elements.

e Real operator[](const Integer el) const: Provides element by element access to the state vector,
so that the components can be read using the same syntax as is used to read C++ array elements.

e void SetSize(const Integer size): Resizes the state vector. This method copies the current state
data into the resized vector once the new vector has been allocated.

e const Integer GetSize() const: Returns the current size of the state vector.

e Real *GetState(): Returns the state vector. The returned vector is the internal Cartesian state used
by the propagators. The state data is in Mean-of-J2000 Earth-Equatorial coordinates, referenced to
the SpaceObject’s origin.

e bool SetState(Real *data, Integer size): Sets the state vector to match the input vector. If the
size parameter is less than or equal to the dimension of the state vector, the data vector is copied
into the state vector, filling from the start until the indicated number of elements is filled. If size is
greater than the PropState dimension, the method returns false. The input state is in Mean-of-J2000
Earth-Equatorial coordinates, referenced to the SpaceObject’s origin.

e Real GetEpoch() const: Returns the value of the epoch data member. The returned value is a TAI
modified Julian value.

e Real SetEpoch(const Real ep): Sets the value of the epoch data member. The input value is a
TATI modified Julian value.

13.3 The Spacecraft Class

One key component that supplies PropState data to GMAT is the Spacecraft class, used to model satellites
in the mission control sequence. Each satellite studied in the mission has a corresponding Spacecraft object,
configured to simulate the behavior of that satellite. The Spacecraft contains core data elements necessary
to model the physical characteristics of the satellite, along with the inherited SpaceObject properties that
form the core state representations used for propagation.
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In GMAT, the Spacecraft model allows for the addition of new satellite components that model specific
hardware elements. The current implementation supports fuel tanks and thrusters for use when modeling
finite maneuvers. The base class for the hardware subsystem was designed to be flexible, incorporating
data elements designed to model the location and orientation of the hardware relative to a satellite body
coordinate system. The orientation data is used in GMAT to set the thruster direction during finite burns.
Once the thrust direction has been determined, it it rotated based on the satellite’s attitude to determine
the thrust direction in the propagation frame, so that the maneuver acceleration can be incorporated into
the force model. This modular hardware incorporation is also the first step towards incorporating moments
of inertia into the model, so that full six degree of freedom modeling can be performed in GMAT. Additional
details of the hardware model are provided in Chapter [[4

13.3.1 Internal Spacecraft Members

Spacecraft objects are SpaceObjects, so they contain all of the data structures associated with SpaceObjects
described above. They manage a StringArray that contains the current state as expressed in the current
state representation. This array typically contains the state as seen on the GUI or in the script file that
configured the Spacecraft; the data in this array is only updated when needed for display purposes.

The Spacecraft class contains data members controlling the core ballistics of the object. Mass is handled
as a core Spacecraft mass plus all masses associated with the hardware attached to the Spacecraft. The
force model accumulates the mass into a total mass used in the acceleration calculations. Areas and force
coefficients are included in the Spacecraft model for drag and solar radiation pressure calculations.

13.3.2 Spacecraft Members

The Spacecraft class provides data memebers used to manage the ballistic properties of the spacecraft.
Properties are defined to manage the spacecraft mass, incident areas for drag and solar radiation pressure
perturbations, associated coefficients of drag and reflectivity, and the structures needed to add hardware
elements to the core spacecraft objects. The members that provide this support are:

Class Attributes

e Real dragCoefficient: The coefficient of drag, C4 (see equation 21.3)), used when calculating atmo-
spheric forces acting on the spacecraft.

e Real dragArea: The area of the spacecraft encountering the atmosphere.

e Real srpCoefficient: The reflectivity coefficient, Cr (see equation 2T.2)), used when calculating
accelerations from solar radiation pressure.

e Real srpArea: The area exposed to solar radiation, for the purposes of calculating the solar radiation
pressure force.

e Real dryMass: The total mass of the spacecraft, excluding fuel and other massive hardware elements.
e StringArray tankNames: Names of the fuel tanks that the spacecraft uses.
e StringArray thrusterNames: Names of the thrusters that the spacecraft uses.

e ObjectArray tanks: Array of fuel tanks on the spacecraft. Fuel tanks are added to spacecraft by
making local copies of defined tanks. Each fuel tank contributes fuel mass to the total mass of a
spacecraft. Fuel is depleted from the tanks during finite maneuvers*.

4Mass depletion is scheduled for implementation during the summer of 2007.
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e ObjectArray thrusters: Array of thrusters attached to the spacecraft. Thrusters are added to
spacecraft by making local copies of defined thrusters. Each thruster has a location and pointing
direction defined in teh spacecraft’s body coordinate system. The applied thrust dir ection is computed
by rotating the thrust direction based on teh spacecraft’s attitude®. The thruster mass should be
included in the dry mass of the spacecraft.

e Real totalMass: The total mass of the spacecraft, including fuel and other massive hardware elements.
This is a calculated parameter, available only as an output. Users cannot set the spacecraft’s total
mass.

Methods The support for Spacecraft state and epoch access and manipulation is provided by the
SpaceObject base class. Access to the new data members described above is provided using the GmatBase
access methods described in Section Generally speaking, the ballistic properties are accessed using
the GetRealParameter and SetRealParameter methods overrifdden from the base class. Hardware elements
are set by name, and configured on the Spacecraft by passing in pointers to configured hardware elements
which are then cloned inside the spacecraft tto make the local copy used when executing the mission control
sequence. Since most of the infrastructure for these steps is described elsewhere, the list of new methods
on the Spacecraft is rather sparse, consisting of notes describing Spacecraft specific details implemented for
these core methods:

e virtual Real GetRealParameter(const Integer id) const: Returns the real parameters listed in
the data member section. Of particular interest here is the treatment of the mass parameter. Requests
can be made for either the dry mass of the spacecraft or the total mass of the spacecraft. When the
total mass is requested, the returned value is the output of the UpdateTotalMass() method described
below.

e virtual bool TakeAction(const std::string &action, const std::string &actionData = ""):
TakeAction in the Spacecraft class adds the following new actions to the object:

— SetupHardware: Examines the hardware on the spacecraft, and sets up internal linkages required
for this hardware. For example, each thruster reqires a pointer to a fuel tank; that connection is
configured by this action.

— RemoveHardware: Removes one or all hardware elements from the Spacecraft. If a name is
specified for the hardware element, only that element is removed. If the actionData string is
empty, all hardware elements are removed.

— RemoveTank: Removes one or all fuel tanks from the Spacecraft. If a name is specified for the
fuel tank, only that tank is removed. If the actionData string is empty, all fuel tanks are removed.

— RemoveThruster: Removes one or all thrusters from the Spacecraft. If a name is specified for
the thruster, only that thruster is removed. If the actionData string is empty, all thrusters are
removed.

The Spacecraft Class includes the following protected methods used to maintain some of the internal
data structures, and to generate data needed for the public methods:

e Real UpdateTotalMass(): Updates the total mass by adding all hardware masses to the dry mass.

¢ Real UpdateTotalMass() const: Updates the total mass by adding all hardware masses to the dry
mass. The const version does not update the internal member, and therefore can be called by other
const methods.

5The current implementation uses either an inertial attitude or a velocity-normal-binormal attitude for this calculation.
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13.4 Formations

In GMAT, SpaceObjects can be grouped together and treated as a single entity, the Formation, which evolves
over time as a single state vector. Each Formation can contain Spacecraft, other Formations, or any other
SpaceObject defined in the system. Formations are modeled using instances of the Formation class, described
in this section.

Class Attributes

e StringArray componentNames: Names of the SpaceObjects in the formation.

e std::vector <SpaceObject *> components: Pointers to the formation members.
e Integer dimension: Size of the state vector used in propagation.

e UnsignedInt satCount: Number of SpaceObjects in the components vector.

Methods The Formation class defines the following methods, used to manage the objects in the For-
mation:

e virtual void BuildState(): Constructs the PropState for the Formation.

e virtual void UpdateElements(): Updates the member SpaceObjects using the data in the Forma-
tion PropState.

e virtual void UpdateState(): Updates the internal PropState data from the member SpaceObjects.

e virtual bool TakeAction(const std::string &action, const std::string &actionData = ""):TakeAction
in the Formation class adds two actions to the object:

— Clear: Calls ClearSpacecraftList() to remove all SpaceObjects from the Formation.

— Remove: Calls RemoveSpacecraft() with a specific SpaceObject name to remove that SpaceObject
from the Formation.

Formation also contains two protected methods that are used to pupport the public interfaces:

e bool ClearSpacecraftList(): Clears the list of SpaceObjects in the Formation. This method clears
both the list of SpaceObject names and the list of instance pointers.

e bool RemoveSpacecraft(const std::string &name): Removes a SpaceObject from the list of
Formation members. This method removes both the SpaceObject name from the componentNames
member and the instance pointer from the components list.

13.5 Conversion Classes

GMAT’s Spacecraft and Formation models act as a data provider for state information that is fed into the
propagation system. Users interact with this aspect of the model by selecting the view of the data, spacecraft
by spacecraft, in one of many different coordinate systems and state representations at a user specified epoch.
On a coarse level, the views into the state data can be broken into three separate components: the time system
used to track the epoch for the spacecraft, the coordinate system that specifies the origin and orientation of
coordinate axes defining the position and velocity of the spacecraft, and the representation used to express
this state data — a set of Cartesian or Keplerian elements, or some other representation based on the needs
of the user.
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Internally, these data are managed as Mean-of-J2000 Earth-Equatorial states, translated to the origin
specified for the SpaceObject, in either the Cartesian or equinoctial representation®. Epoch data is stored
internally in international atomic time (TAI, Temps Atomique International), in a modified Julian time
format measured in days from January 5, 1941 at 12:00:00.000.

The Conversion classes and the related base classes defining the interfaces for the conversion types are
designed to satisfy GMAT’s extensibility requirements. Users can define new coordinate systems as needed,
from either GMAT’s graphical user interface or from a script file. Representations and time systems are
more difficult to add to the system because the underlying math and is more specialized to meet the needs
of the system. Users that need to add state representations or time systems not currently in GMAT should
refer to Chapter

The basic philosophy for conversions performed by GMAT is that all conversions proceed from the internal
data type, and go through that type when converting from one system to another. Conversions for epoch
data are referenced to the base TAI epoch. Coordinate system conversions are referenced to the Mean of
J2000 Earth Equatorial system. Element conversions are referenced to the Cartesian or equinoctial state
representation.

All of the conversion components that support the Spacecraft and Formation classes have a similar
structure. Each acts as a pipeline from the data in the SpaceObject to the code that transforms that data
into the requested format. In that sense, the converters play the role of the controller in a simplified model-
view-controller pattern, as described in Section [B.6l The SpaceObject plays the role of the model, and the
presentation to the user — the GMAT GUI or the Script file — presents a view of these data to the user.

There are three converters used by the SpaceObjects for this purpose. Each SpaceObject has a Time-
Converter, a CoordinateConverter, and a RepresentationConverter. The Converter classes contain instances
or references to the support classes used in the conversions. Each support class represents a single view of
the data. The support classes implement a conversion method that transform the internal data into the
requested view.

The class hierarchy for the converters and the support classes is shown in Figure [3.2] . Each converter is
derived from the Converter base class. All converters support the ability to take a PropState and transform
the data in that state into the requested format for display and manipulation by the user. They also support
the inverse operation, converting a set of user data specified into a PropState. The interfaces for these
conversions are contained in the Converter base class.

Each Converter subclass holds a reference to the data type used in the PropState as the base repre-
sentation for the corresponding data. The object that owns the PropState is responsible for setting this
reference.

13.5.1 The Converter Base Class

All conversions performed for spacecraft and formations are managed through the Converter classes. GMAT
provides three types of converters: time system converters, coordinate system converters, and state represen-
tation converters. Each of these converters manages the corresponding conversion code. The SpaceObjects
wrap these calls in methods that simplify interface to the data. Specific conversions are made through the
calls to the Convert method on the appropriate converters.

The Converter base class has the following internal data members and methods:

Class Attributes

e static StringArray supportedConversions: String array of all of the defined conversions supported
by this converter.

6The current implementation in GMAT uses Cartesian elements exclusively; equinoctial representations will be added as an
option for the PropState data when the Variation of Parameters integrators are incorporated into the system.

"Figure [3.2 shows the long term design for the conversion classes. The code base developed for the first release of GMAT
supports the interfaces needed for conversion, but only partially implements the illustrated design.
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cd: Converter Classes
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Figure 13.2: Classes Used to Provide Views of the SpaceObject State Data. The converter classes are shown
in yellow. Base classes for the View support classes are green, and specific support classes are shown in blue.

Integer precision: Precision used for numeric data when converting to a string format.

Methods

void Initialize(): Method called to prepare and validate the converter for use in a SpaceObject.

static bool AddConversion(const std::string &conversionType, GmatBase *toBase): Method
used to add support for a new conversion to the Converter. This method is used to add configured
CoordinateSystems to the CoordinateConverter. The TimeConverter and RepresentationConverter
classes do not support addition of new systems in the current builds of GMAT.

static StringArray GetSupportedConversions(): Method used to return the list of all of the
conversions supported by the Converter.

std::vector<Real> Convert(const PropState &fromState, std::string toType, GmatBase*=NULL
toObject) = 0: Abstract method that converts data from a PropState into the requested type.

PropState Convert (std::vector <Real> fromState, std::string fromType, GmatBase*=NULL
fromObject) = 0: Abstract method that fills a PropState in the internal representation from input
data of the specified type.

virtual StringArray ToString(std::string toFormat, std::vector<Real> value, std::string
fromFormat) = 0: Abstract conversion routine that takes a state in Real vector (value) in a specified
format (fromFormat) and converts it to a string array in a target format (toFormat).
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e virtual std::vector<Real> ToReal(std::string fromFormat, StringArray value, std::string

toFormat) = 0: Abstract conversion routine that takes a the text form of a state in StringAr-
ray (value) in a specified format (fromFormat) and converts it to a Real vector in a target format
(toFormat).

13.5.2 Time Conversions

The TimeConverter class provides implementations for the abstract methods inherited from the Converter
base class. The current code base supports time conversions using C-style functions enclosed in a namespace,
TimeConverterUtil. The TimeConverter class wraps these conversions so that there is a time conversion
interface in GMAT that looks identical to the other conversion interfaces in the system. A future release of
the system will rework the time conversions do that the class structure matches the class hierarchy shown
in Figure The following descriptions provide initial steps toward this goal, marked as with the prefix
“«Future»” for elements that are not planned for the system until these elements are incorporated during

these time system revisions®.
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Figure 13.3: Classes Used to Convert Epoch Data

The TimeConverter class is shown in Figure [[3.3] The properties of this class, including the arguments
for the methods that are hidden in the figure, are tabulated below.

Class Attributes

e «Future» TimeBase *baseTime: An instance of the base time system used internally in GMAT.
This member contains a pointer to a TAIModJulian instance so that the conversion code has the time
system for methods that use PropStates at one end of the conversion.

8GMAT is, by design, extensible to incorporate new components as they are identified and constructed by the GMAT
community, without violating the integrity of the official code base. The time system code as currently implemented would
require rework in the GMAT’s base code to support any new time system, violating this requirement; the design shown here
provides the framework needed to correct this discrepancy.
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e «Future» std::vector<TimeBase*> timeSystems: A vector containing pointers to each of the
defined time systems in GMAT, so that the conversion code can perform conversions without requiring
time system pointers on the function calls.

Methods
e void Initialize(): Method called to prepare and validate the converter for use in a SpaceObject.

e std::vector<Real> Convert(const PropState &fromState, std::string toType, GmatBase*=NULL
toObject): Method that converts the TAT epoch data from a PropState into the requested type. The
resulting modified Julian data is stored in the first element of the returned array.

e PropState Convert(std::vector<Real> fromState, std::string fromType, GmatBase*=NULL
fromObject): Method that sets the epoch on a PropState to the epoch contained as the first ele-
ment in the input data (fromState), which is expressed in the time system given by the name in the
fromType string.

e virtual StringArray ToString(std::string toFormat, std::vector<Real> value, std::string
fromFormat) = 0: Conversion routine that takes epoch data in a vector of Reals in a specified format
(fromFormat) and produces the string equivalent of each element in the requested format, given by
toFormat, in the returned StringArray.

e virtual std::vector<Real> ToReal(std::string fromFormat, StringArray value, std::string
toFormat) = 0: Conversion routine that takes one or more epochs in a StringArray (value) in
a specified format (fromFormat) and converts them into a vector of Real data in a target format
(toFormat). The resulting data is a vector of modified Julian data in the target time system. If a
request is made from Gregorian data in the Real vector, an exception is thrown.

The TimeSystem Classes

As mentioned above, the current time system conversion code does not use a class bases system to handle
the time systems. This section will be completed when the time system code is brought into conformance
with the conversion system design.

13.5.3 Coordinate System Conversions

Figure [3.4] shows the CoordinateConverter class, used to transform state data between different coordinate
systems. The CoordinateConverter class works with state data expressed in Cartesian coordinates exclusively.
Consumers that have state data in other representations first convert the data into Cartesian coordinates,
and then use the facilities provided by instances of this class to transform between coordinate systems.

The CoordinateConverter objects work with any coordinate system defined by the user. The other two
converters provided by GMAT — the TimeConverter class and the RepresentationConverter class — require
code compiled into GMAT in order to function®. Coordinate systems in GMAT can be defined at run time, as
described in [UsersGuide]. The dynamic nature of these objects requires greater versatility in the conversion
methods. Consumers of these methods must provide pointers to instances of the coordinate systems used in
the conversions.

CoordinateConverter Attributes and Methods
Class Attributes

9A future release of GMAT may allow dynamic definition of representations and time systems. That facility is not planned
for near term GMAT functionality.
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Figure 13.4: Classes Used to Convert Between Coordinate Systems

e CoordinateSystem *baseCoordSys: An instance of the CoordinateSystem class used as the base
class for conversions involving a PropState. This member is initialized to NULL, and set by SpaceOb-
jects that need it prior to use.

e Rmatrix33 lastRotMatrix: The most recent rotation matrix used in coordinate conversions, stored
so that it can be accessed externally.

e std::map <std::string, CoordinateSystem* > availableCoordSys: A map of coordinate systems
available for use in methods that do not pass on CoordinateSystem pointers. These pointers are stored
in a map so that they can be accessed by name.

Methods
e void Initialize(): Method called to prepare and validate the converter for use in a SpaceObject.

e bool Convert(A1Mjd epoch, Rvector inState, CoordinateSystem* inCoord, Rvector out-
State, CoordinateSystem* outCoord, bool forceNutationComputation — false, bool omit-
Translation = false): General purpose conversion routine that converts a Cartesian Rvector in a
given input coordinate system into a Cartesian Rvector in the output coordinate system.

e bool Convert(A1Mjd epoch, Real* inState, CoordinateSystem* inCoord, Real* outState,
CoordinateSystem* outCoord, bool forceNutationComputation—false, bool omitTransla-
tion—=false): General purpose conversion routine that converts a Cartesian Real array in a given input
coordinate system into a Cartesian Real array in the output coordinate system. This method requires
that the input and output Real arrays both contain the Cartesian state in the first six elements.

e Rmatrix33 GetLastRotationMatrix() const: Method used to access the most recent rotation
matrix used in conversions.
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o std::vector<Real> Convert(const PropState &fromState, std::string toType, GmatBase*
toCS): Method that converts the state in the input PropState into the specified CoordinateSystem.
The toCS parameter is a pointer to an instance of the target coordinate system. This method uses the
base coordinate system, baseCoordSys, as the coordinate system of the input PropState. The calling
code must ensure that the base coordinate system is set correctly.

e PropState Convert(std::vector<Real> fromState, std::string fromType, GmatBase* fromCS):
Method that sets the state in the data in a PropState in the base coordinate system, given an input
state in a specified CoordinateSystem. The fromCS parameter is a pointer to an instance of the co-
ordinate system used for the input state, fromState. This method uses the base coordinate system,
baseCoordSys, as the coordinate system of the target PropState. The calling code must ensure that
the base coordinate system is set correctly.

e StringArray ToString(std::string toFormat, std::vector<Real> value, std::string fromFor-
mat): Method that takes a Cartesian state contained in a vector of Reals is a specified coordinate
system, and converts it into a target coordinate system, then stores the data in a StringArray at the
precision set for the converter.

e std::vector<Real> ToReal(std::string fromFormat, StringArray value, std::string toFor-
mat): Method that takes a Cartesian state contained in a StringArray in a specified coordinate system,
and converts it into a target coordinate system, then stores the data in a vector of Reals.

e void AddCoordinateSystem(CoordinateSystem *cs): Method used to add a CoordinateSystem
pointer to the map of available coordinate systems.

The CoordinateSystem Classes
Coordinate Systems in GMAT are described in detail in Chapter

13.5.4 State Representation Conversions

Once the coordinate system has been selected for a state, the actual format for the data must also be
selected. The state can be displayed in many different ways: as Cartesian data, as the corresponding
Keplerian elements, or in any other representation defined in GMAT. The conversion from the Cartesian
state into a selected representation is managed by the RepresentationConverter class, shown in Figure [3.5

RepresentationConverter Attributes and Methods

Class Attributes

e SpacePoint* origin: The SpacePoint defining the coordinate system origin. Some representations
need this object to determine the representation data; for instance, the Keplerian representation needs
the gravitational constant for the body at the origin.

e StringArray elements: A vector of text string labels for the elements. This vector contains the
labels for the most recent target conversion.

e StringArray units: A vector of text string labels for the element units. This vector contains the
units for the most recent target conversion.

e «Future» Representation baseRep: The representation used for the PropState data.

e «Future» std::vector<Representation* > supportedReps: A vector of instances of all supported
representations, provided so that conversions can be made without passing in a pointer to a target
representation.
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Figure 13.5: Classes Used to Convert State Representations
Methods

«Future» bool AddRepresentation(Representation* rep): Method used to register a new rep-
resentation with the converter. This method is used to register new representations that are built into
shared libraries loaded at run time.

std::vector<Real> Convert(const PropState &fromState, std::string toType, GmatBase*
toRep=NULL): Method that converts the state in the input PropState into the specified Represen-
tation. The optional toRep parameter is a pointer to an instance of the target Representation; if it
is not provided, the converter finds an instance in its internal array of Representations. This method
uses the base representation, baseRep, as the representation of the input PropState. The calling code
must ensure that the base representation is set correctly.

PropState Convert(std::vector<Real> fromState, std::string fromType, GmatBase* from-
Rep): Method that sets the state in the data in an PropState in the base representation, given an input
state in a specified Representation. The fromRep parameter is a pointer to an instance of the Repre-
sentation used for the input state, fromState. This method uses the base Representation, baseRep, as
the representation of the target PropState. The calling code must ensure that the base representation
is set correctly.

std::string SupportsElement(std::string label): Method used to query all supported representa-
tions to determine which representation supports a specified element. The return value is the name of
the supporting representation.
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e StringArray ToString(std::string toFormat, std::vector<Real> value, std::string fromFor-
mat="Cartesian"): Conversion routine that generates a text view of the state contained in the input
Real vector in a target representation. The resulting StringArray contains data at the Converter’s pre-
cision.

e std::vector<<Real> ToReal(std::string fromFormat, StringArray value, std::string toFor-
mat="Cartesian"): Conversion routine that takes a text version of a state in a StringArray, expressed
in a specified representation, and converts it into a Real vector of data in a target representation.

The Representation Classes

«Future»'? All state representations share a common interface, enforced by the Representation base class.
Representations like the Keplerian representation that provide options for certain elements provide the list
of options for the elements on an element by element basis..

13.6 Conversions in SpaceObjects

The SpaceObject classes — SpaceObject, Spacecraft, and Formation, and other classes as they are added to
GMAT - all share a common representation of locations in the GMAT SolarSystem, the PropState. As its
name implies, the PropState class is the core component that interacts with the propagation subsystem; it
contains the epoch, position and velocity data that is advanced to model the motion of user defined objects
in the solar system. The data stored in the PropState is a TATI epoch and the Mean-of-J2000 Cartesian
positions and velocities of the objects that are propagated. The origin for these data is a SpacePoint object
defined in the solar system. Each SpaceObject includes a pointer to the SPacePoint defining the origin and a
CoordinateSystem object configured as a Mean-of-J2000 Earth-Equatorial origin-centered coordinate system
to facilitate conversions between the data in the encapsulated PropState and external consumers of the data.

The PropState data is encapsulated inside of SpaceObject instances. Users interact with the PropState
indirectly, by making calls to these SpaceObjects. This feature provides a buffering mechanism to GMAT’s
SpaceObjects, so that the data in the PropState can be formatted for presentation purposes for the user.
The SpaceObject class provides interfaces that convert the internal PropState data into other formats for
display, and that take data from those formats and convert them into the internal PropState structures
needed for computation.

SpaceObjects include four data structures used this buffering of the state data. The epochType and
stateType data members are strings containing the current settings for the displayed format of the epoch
and state representation. String versions of the epoch and state in these formats are stored in the textEpoch
and textState data members. These string versions of the data are the versions that users interact with
when configuring a mission, either from the GUI or using the scripting interface. The following paragraphs
describe the procedure followed when performing these interactions.

13.6.1 SpaceObject Conversion Flow for Epoch Data

Figure 3.6l shows the procedure employed to send and receive epoch data for a SpaceObject using the string
format needed for display and output purposes. Epochs can be displayed in either Gregorian or Modified
Julian format, using one of several different supported time systems. The time system used and the format
for the output are separate entities, and treated as such in GMAT. The internal epoch data is stored in the
TAI system as a Modified Julian Real number. This data is retrieved for external manipulation as a string,
using the GetEpochString() method on the SpaceObject that owns the epoch. Updated epoch data is passed
into the SpaceObject using the SetEpochFromString method.

10Tike the time conversion classes, the representation conversion classes do not currently conform to the design presented
here. Accordingly, in the following descriptions, the elements that are not planned for immediate implementation are marked
as future enhancements.
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Figure 13.6: Procedure for Retrieving or Setting a Formatted Epoch

The top activity diagram in the figure shows the procedure followed to retrieve the current epoch data
from the SpaceObject using the GetEpochString method. The first action taken is a test to determine if the
target time format matches the epoch format used in the SpaceObject. If so, then the string that is returned
is the textEpoch data member for the SpaceObject, as set immediately after synchronizing the textEpoch
with the PropState. If the time systems do not match, the target time system is broken into two pieces:
the time system used and the format for the string. The format portion is the suffix on the toTimeType
parameter, and is either “ModJulian” or “Gregorian”. The GetEpochString method retrieves the epoch from
the PropState and, if the target system is not TAI, converts it into the target time system. Then it takes
that ModJulian real number, and converts it into a formatted string using the timeConverter’s ToString
method.

The lower activity diagram in Figure [[3.6] shows the procedure followed when setting the epoch from
the GUI or script, using the SetEpochString method on the SpaceObject. The first parameter in this call
specifies the format of the input time. It is broken into the input time system and the format of the string.
The time converter then constructs a modified Julian real value for the input string using its ToReal method.
If the input time is not a TAI time, it is then converted into TAI. The resulting modified Julian epoch is
then set on the PropState using the SetEpoch method. Finally, the Synchronize method is called on the
SpaceObject to update the string representation of the epoch with the data in the PropState.

13.6.2 SpaceObject Conversion Flow for State Data

The state data in the PropState can be manipulated either element by element or as a complete vector. The
following paragraphs describe the conversion procedures for both approaches.

Converting State Vectors

Figure 3.7 shows the procedures employed to convert the state in vector form. State conversions are always
a two step procedure. The state data in the PropState is always defined with respect to the Mean-of-J2000
Earth Equatorial coordinate axes orientation, wit h the coordinate origin located at a user specified origin.

The internal data is stored in the Cartesian representation'!. Users can view the state in any defined

HA future update will allow internal storage in either Cartesian or Equinoctial elements, so that Variation of Parameters
propagation methods can be implemented.
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Figure 13.7: Procedure for Retrieving or Setting a Formatted State

coordinate system using any representation defined in GMAT. Hence the procedure for building the state
for display to the user potentially involves both a coordinate transformation and an element conversion, as
shown in the figure.

Conversion of the PropState data for display is shown in the top diagram in the figure. The state vector
is requested using the GetStateString method, which contains three parameters: the target representation in
the toType parameter, the name of the target coordinate system in the toCoords parameter, and a pointer
to an instance of the target coordinate system. The SpaceObject has a pointer to a base coordinate system,
along with the name of the base system. If these match the target coordinate system, then the coordinate
conversion step can be skipped; otherwise, the internal state vector in the PropState is converted into the
target coordinate system. The resulting intermediate state vector is then converted into a StringArray in
the target representation using the ToString() method on the SpaceObject’s representation converter.

The lower diagram in Figure [I3.7 shows the inverse process, used to set the state vector on a SpaceOb-
ject through the SetStateFromString method. This method has four parameters: the input state in the
StringArray parameter stateString, the representation that that StringArray uses (fromType), the name of
the coordinate system (fromCoords) used for the input state, and a pointer to an instance of that coordi-
nate system (fromCS). First the input state is converted into a Cartesian vector using the SpaceObject’s
RepresentationConverter. Once the Cartesian state has been constructed, it is transformed into the internal
coordinate system and stored in the SpaceObject’s PropState. Finally, the SpaceObject’s text representation
of the state is updated suing the Synchronize method!?

Converting Single Elements

The procedure for setting single state elements is shown in Figure [3.8 This procedure is slightly more
involved than the procedure employed to set a complete state because the procedure includes provisions for
setting elements from one representation while maintaining a different text representation of the state in the
textState buffer. This allows a user to script, for example, a semimajor axis for a spacecraft that stores its
state in a Cartesian representation. Element setting is performed using the standard SetStringParameter
method defined for all GmatBase subclasses.

I21f both the representation and internal coordinate system for the PropState match the input values, the input state vector
strings are copied into the testState member, and Synchronize() is not called.
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Figure 13.8: Procedure for Setting a Single Element in the State

The procedure employed for setting a single element when the element’s name is a member of the current
state representation is straightforward. The string containing the new element data in inserted into the
textState string array, converted into a real vector in Cartesian coordinates by the representation converter,
and then into the internal coordinate system by the coordinate system converter. This state is set on the
PropState.

If the element is not a member of the current representation, the procedure is slightly more complicated.
The textState is converted from the current state type into a vector of real numbers in the representation
containing the element that is being set. The element is set to the input value, and the resulting vector is con-
verted back into the textState StringArray. Then the textState is converted into the internal representation
and coordinate system as described in the previous paragraph.
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Chapter 14

Spacecraft Hardware

Darrel J. Conway
Thinking Systems, Inc.

Chapter [I3] described the structure of the core spacecraft model used in GMAT. This chapter examines

the components that can be used to extend the spacecraft model to include models of hardware elements
needed to model finite maneuvers and sensor measurements.

14.1 The Hardware Class Structure

14.2 Finite Maneuver Elements

14.2.1 Fuel tanks
14.2.2 Thrusters

14.3 Sensor Modeling in GMAT

GMAT does not contain sensor modeling capabilities at this time. The Hardware class infrastructure was
designed to support sensor modeling at a later date.

14.4 Six Degree of Freedom Model Considerations
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Chapter 15

Attitude

Wendy C. Shoan
Goddard Space Flight Center

15.1 Introduction

GMAT provides the capability to model the attitude of a spacecraft. The attitude can be computed in
any of three different ways: kinematically, by performing six-degree-of-freedom calculations, or by reading
an attitude file (format(s) TBD). The current version of GMAT has only two types of kinematic modeling
available; other methods are to be implemented at a later date.

15.2 Design Overview

When the user creates a Spacecraft object, via the GUI or a script, and s/he needs to compute or report the
attitude of that spacecraft at one or more times during the run, s/he must specify a type of attitude for the
spacecraft. The user must also set initial data on the spacecraft attitude.

A Spacecraft object therefore contains a pointer to one Attitude object, of the type specified by the user.
This object will need to be created and set for the spacecraft using its SetRefObject method. The spacecraft
object contains a method to return its attitude as a direction cosine matrix, and a method to return its
angular velocity.

GMAT can model several different types of attitude, as mentioned above, each computing the attitude
differently. However, since the types of attitude representations are common to all models, many of the data
and methods for handling attitude are contained in a base class, from which all other classes derive.

The base class for all attitude components is the Attitude class. It contains data and methods required
to retrieve spacecraft attitude and attitude rate data. The method that computes the attitude is included
as a pure virtual method, and must be implemented in all leaf classes.

The base Attitude class contains methods that allow the user, the spacecraft, or other GMAT subsystems,
to request attitude and attitude rate data in any of several different parameterizations. Attitude may be
returned as a quaternion, a direction cosine matrix, or a set of Euler angles and a sequence. An attitude
rate is retrievable as an angular velocity or as an Euler axis and angle (computed using the Euler sequence).

Also included in the base Attitude class are many static conversion methods, allowing other parts of
GMAT to convert one attitude (or attitude rate) parameterization to another, depending on its needs,
without having to reference a specific spacecraft or attitude object.

As mentioned above, GMAT includes several different attitude models. Kinematic attitude propagation
options are 1) a Coordinate System Fixed (CSFixed) attitude; 2) a Spinner attitude; and 3) Three-Axis
Stabilized attitude (TBD).
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To implement these, GMAT currently has a Kinematic class that is derived from the Attitude class. The
CSFixed (Coordinate System Fixed) and Spinner attitude classes derive from the Kinematic class and, as
leaf classes, contain implementations of the method, inherited from the base class Attitude, that computes
the attitude at the requested time.

15.3 Class Hierarchy Summary

This section describes the current attitude classes in GMAT, summarizing key features and providing addi-
tional information about the class members. Figure [[5.0] presents the class diagram for this subsystem.

Attitude

The Attitude class is the base class for all attitude classes. Any type of attitude that is created by user
specification, via a script or the GUI, will therefore include all public or protected data members and methods
contained in the Attitude class. Key data and methods are:

Data members

e eculerSequenceList: a list of strings representing all of the possible Fuler sequences that may be
selected by the user

e refCSName: the name of the reference coordinate system - the user must supply this

e refCS: a pointer to the reference coordinate system - this must be set using the attitude object’s
SetRefObject method

e initialEulerSeq: an UnsignedIntArray containing the three values of the initial Euler sequence
e initialEulerAng: an Rvector3 containing the three initial Euler angles (degrees)

e initialDcm: an Rmatrix33 containing the initial direction cosine matrix

e initialQuaternion: Rvector representation of the initial quaternion

e initialEulerAngRates: Rvector3 containing the initial Euler angle rates (degrees/second)

e initialAngVel: Rvector3 containing the initial angular velocity (degrees/second)

Methods
e GetEpoch(): returns the epoch for the attitude

e SetEpoch(Real toEpoch): sets the value for the attitude; this method is called by the GUI, script
interpreter or spacecraft

e SetReferenceCoordinateSystemName(const std::string &refName): sets the reference coor-
dinate system name

e GetEulerSequenceList(): returns a list of strings representing all possible Euler sequence values

e GetQuaternion(Real atTime): returns the quaternion representation of the attitude, computed at
the A1Mjd time atTime

e GetEulerAngles(Real atTime): returns the Euler angle representation of the attitude, computed
at the A1Mjd time atTime



15.3. CLASS HIERARCHY SUMMARY

Mtitude Classes ,l

GmatBasa

RinganceMatne: string
Atype:Gmat: OhjectT ype
Hypeh ame: string

Factory

+Chnel) GmatBaset
+|nitializeT bool

1

Attitarde

#ourrertRELR matrix33
#curentwBE Rvedors

AttitudeFactony

Crestes

+ToCosinet atri=.. L Rinatrix33 *

+ToEulerdnglest. . Rvedor3

+Createsftituded.. T ARitude*

+Touatemion (... IRvedor

+ToEulerdngleRatesl. IRwedar3
+Totnoularel octyr... IR ve dors

+Initialize( bool

+iG etEulers equenceli =i String Array
+GetQustemion R ve cor
+GetEulertngle s Rvedors
+GetEulerfngle s rRvedor3

+G etz osineM atrix( kR matrix33

+3etAngul artel ocity(): R we cor 3
+GetEulertngleRates(:Rvedor3

#Compute CosineMatricd ndd nguiadd eloc iy v ai!

7

Ritro i atic

== Future ==
6DOF

== Future ==
AttitudeFile

C5Fixed

Spinner

== Future ==

+InitializelT bool
FC om put eC osinet atrix And Angul ary elocity(xvoidd

#REOLRmatix33
#initialwhiag:Real
#initiale &z R we dors

Threehxis

+Initializel bool
#Com put eC osinet atriz AndAngul ary elocity (1 void

Figure 15.1: Attitude Classes

133



134 CHAPTER 15. ATTITUDE

o GetCosineMatrix(Real atTime): returns the direction cosine matrix representation of the attitude,
computed at the A1Mjd time atTime

o GetAngularVelocity(Real atTime): returns the angular velocity representation of the attitude
rate, computed at the A1Mjd time atTime

e GetEulerAngleRates(Real atTime): returns the Euler angle rates representation of the attitude
rate, computed at the A1Mjd time atTime

In addition to class methods, there are several static methods in the base Attitude class that may be
used without instantiating an object of type Attitude. These are all methods to convert between attitude
representations or between attitude rate representations (angles are assumed to be in radians). They are:

e ToCosineMatrix(const Rvector &quatl): converts the input quaternion to a direction cosine
matrix

e ToCosineMatrix(const Rvector3 &eulerAngles, Integer seql, Integer seq2, Integer seq3):
converts the input Euler angles and sequence to a direction cosine matrix

e ToEulerAngles(const Rvector &quatl, Integer seql, Integer seq2, Integer seq3): converts
the input quaternion to Euler angles, given the input Euler sequence

e ToEulerAngles(const Rmatrix33 &cosMat, Integer seql, Integer seq2, Integer seq3): con-
verts the input direction cosine matrix to Euler angles, given the input Euler sequence

e ToQuaternion(const Rvector3 &eulerAngles, Integer seql, Integer seq2, Integer seq3):
converts the input set of Fuler angles and sequence to a quaternion

e ToQuaternion(const Rmatrix33 &cosMat): converts the input direction cosine matrix to a
quaternion

e ToEulerAngleRates(const Rvector3 angularVel, Integer seql, Integer seq2, Integer seq3):
converts the input angular velocity to Euler angle rates, using the input Euler sequence

e ToEulerAngleRates(const Rvector3 eulerRates, Integer seql, Integer seq2, Integer seq3):
converts the input Euler angle rates to angular velocity, using the input Euler sequence

Kinematic

The Kinematic class is the base class for the kinematic models: Coordinate System Fixed, Spinner, and
Three-Axis Stablized (TBD). At this time, there are no additional data members or methods for this class.

CSFixed

The CSFixed class models a Coordinate System Fixed attitude. The user supplies the initial attitude and
specifies the reference coordinate system, from the current set of default and user-defined coordinate systems,
to which the attitude is fixed. Since the attitude is fixed to this coordinate system, no initial attitude rate
need be provided. The code in this class then computes the attitude at a requested time using the initial
input data and the rotation matrix between the reference coordinate system and the inertial coordinate
system at the specified time, obtained from the Coordinate System subsystem. There are no significant data
members.

Methods

e ComputeCosineMatrixAnd AngularVelocity(Real atTime): computes the direction cosine ma-
trix and angular velocity at the requested time; these data can then be retrieved in other representations
as well
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Spinner

This class models a Spinner attitude. The user must supply an initial attitude and reference coordinate
system when initializing a Spinner attitude. In addition, s/he must provide an initial attitude rate. This
rate does not change over time, for this model. The initial epoch is expected to be an A1Mjd time, input
as a Real, and is assumed to be the same as the orbit epoch (i.e. when the orbit epoch is set, the spacecraft
knows to use that epoch for the attitude as well). This class can then compute the attitude at a specified
time, using the initial input data and the rotation matrix from the reference coordinate system to the inertial
coordinate system at the epoch time. It contains some protected data members to store data computed on
initialization.

Methods

e ComputeCosineMatrixAnd AngularVelocity(Real atTime): computes the direction cosine ma-
trix and angular velocity at the requested time; these data can then be retrieved in other representations
as well

15.4 Program Flow

After an Attitude object is created and passed to a Spacecraft object, the initial data must be set. Then, as
it is for most objects, the Initialize method must be called on the attitude. After that, the Attitude object
is ready to compute the spacecraft attitude at any time requested.

15.4.1 Initialization

As mentioned above, the user must specify attitude initial data for a spacecraft, via the GUI or the script.
An example script appears here:

Sat.AttitudeMode = {Kinematic, 6DOF, FromFile};
Sat.KinematicAttitudeType = { Spinner, CSFixed}; 7% 3-Axis TBD

Sat.AttitudeCoordinateSystem = MJ2000Ec;

Sat.AttitudeStateType = {EulerAngles, Quaternion, DCM};
Sat.EulerAngleSequence = {123, 132, 213, 312, ... 321};
Sat.EulerAnglel = 5.0; % degrees

Sat.EulerAngle2 = 10.0; % degrees

Sat.EulerAngle3 = 15.0; % degrees

% Sat.ql = 0.0; % these are set if the type is Quaternion
% Sat.q2 = 0.0;

% Sat.q3 = 0.0;

% Sat.q4 = 1.0;
% Sat.DCM11 = 1.0; % set if attitude type is DCM
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% Sat.DCM12

0.0;

% Sat.DCM33

1.0;

Sat.AttitudeRateStateType = {EulerAngleRates, AngularVelocity};
Sat.EulerAngleRatel = 5.0;

Sat.EulerAngleRate2 = 5.0;

Sat.EulerAngleRate3 = 5.0;

% Sat.AngularVelocityX = 5.0; % set if attitude rate type is angular velocity
% Sat.AngularVelocityY = 5.0;

% Sat.AngularVelocityZ = 5.0;

In all models, the initial attitude may be input as a direction cosine matrix, a quaternion, or a set of
Euler angles and sequence. The initial rate may be input as an angular velocity or as an Euler axis and
angle (to be used along with an Euler sequence from the input attitude specification).

15.4.2 Computation

GMAT uses the initial data to compute the attitude at any time requested. For better performance, GMAT
keeps track of the last attitude computed, and the time for which it was computed, and only recomputes
when necessary.

For the two models implemented thus far, it is necessary for GMAT to compute a rotation matrix (and
for the CSFixed attitude, its derivative as well) between the inertial (MJ2000 Equatorial) coordinate system
and the specified reference coordinate system. GMAT has this capability, implemented in its Coordinate
System subsystem.



Chapter 16

Script Reading and Writing

Darrel J. Conway
Thinking Systems, Inc.

GMAT stores mission modeling data in a text file referred to as a GMAT script file. The scripting
language used in GMAT is documented in [UsersGuide]. This chapter describes the architecture of the
ScriptInterpreter subsystem, which is used to read and write these files.

GMAT scripts, like MATLAB scripts, are case sensitive. In the sections that follow, script elements, when
they appear, will be written with the proper case. That said, this chapter is not meant to be a comprehensive
text on GMAT scripting. Script lines and portions of lines are presented here for the purpose of describing
the workings of the ScriptInterpreter and related classes.

16.1 Loading a Script into GMAT

Figure M6.0] shows the sequence followed when GMAT opens a script file and reads it, constructing internal
objects that model the behavior dictated by the script. Some of the detailed work performed in this process
is dictated by the properties of the objects; the figure provides the general flow through the process. The
figure is color coded to reflect three basic groupings of actions taken while reading a script file. The large
scale flow through the ScriptInterpreter system is colored blue; actions that affect configured objects are
colored green, and actions related to the time ordered Mission Sequence are colored yellow. This figure
shows a fair amount of complexity; the section describing the subsystem classes breaks this complexity into
more manageable pieces.

When a user instructs GMAT to read a script, either from the command line or from the graphical user
interface, the Moderator receives an InterpretScript() command containing the name of the file that needs
to be read. This command calls the Interpret() command on the ScriptInterpreter, which uses the classes
and methods provided in the Interpreter subsystem and described in this chapter, to read the script and
configure the objects described in it.

There are four types of physical lines in a script file: (1) comment lines, which start with a percent sign
(%), (2) object definition lines, which start with the word “Create”, (3) command lines, which start with
the text assigned to a GmatCommand class, and (4) assignment lines, which optionally start with the word
“GMAT”!. Comments can be appended on the end of script lines; when that happens, all of the text following
the percent sign comment delimiter is associated with the line and referred to as an inline comment in this
document.

IThe GMAT keyword is automatically inserted on assignment lines when a script is written. The ScriptReadWriter class
has an internal flag that toggles this feature on and off when writing, so that future versions of GMAT can provide the ability
to turn this feature on or off.
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Figure 16.1: Sequence Followed when Loading a Script into GMAT

The script file is read one “logical block” at a time, using the ScriptReadWriter helper class. A logical
block consists of one or more physical lines in the script file. Each logical block can have three elements: one
or more lines of opening comments (identified with leading % characters), an instruction that tells GMAT
to do something, and an inline comment appended to the end of the instruction. Each logical block has at
least one of these elements, but need not have all three. Inline comments cannot exist on their own — they
require the instruction component.

The instruction element can be split up over multiple physical lines in the script file, as long as each
physical line is terminated by ellipsis (...). Inline comments for a multiline instruction must be placed at
the end of the last physical line of the block. White space at the beginning of each line of an instruction
is discarded. Lines that are continued using ellipsis markers pick up an extra space in place of the ellipsis
characters. Instructions in a logical blocks can be terminated with a semicolon; this character has no effect
in GMAT?. Once a logical block has been read from the file using these rules, it is analyzed to determine
the type of information contained in the block.

The ScriptInterpreter treats comment lines that start with the sequence “ %------- as a special type
of comment, called a block delimiter. These lines are ignored by the ScriptInterpreter when reading a script.
Details concerning comment handling are presented later in this chapter, as are the detailed control flow
procedures GMAT follows when working with scripts.

2Semicolons are used in MATLAB to suppress display of the result of the line of text. Since GMAT scripts can be read in the
MATLAB environment, the GMAT scripting language allows, but does not require, a semicolon at the end of an instruction.
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16.1.1 Comment Lines

Comments in GMAT scripts are started with the percent sign (%). Comments can exist in one of two
different forms: either on individual lines, or inline with other GMAT scripting, as shown here:

% This is the main spacecraft in the mission.

Create Spacecraft mainSat % Not to be confused with MaineSat

GMAT mainSat.X = 42165.0 % Start at GEO distance

GMAT mainSat.Y 0.0

GMAT mainSat.Z = 0.0
% This is the velocity part. I’ve intentionally made the
% indentation ugly to make a point: leading white space is
% preserved in comment lines.

GMAT mainSat.VX = 0.0 % But slower than a circular orbit
GMAT mainSat.VY = 1.40
GMAT mainSat.VZ = 0.95

Lines 1-3 and lines 5 and 10-12 are individual comment lines. Lines 6, 7 and 13 contain inline comments.
The individual comment lines fall into two categories: lines 1-3 here are block delimiter lines, denoted by
the delimiter identifier at the start of each line, while lines 5 and 10-12 are user supplied comments. The
ScriptInterpreter inserts the block comments automatically when a script is written, and skips over those
comment lines when reading the script. The user provided comments like lines 5 and 10-12 are stored with
the data provided immediately after those lines. In this script snippet, for example, the comment “% This
is the main spacecraft in the mission” is associated with the object creation line, and stored as an
object level comment for the Spacecraft named mainSat. The comments on lines 10-12:

% This is the velocity part. I’ve intentionally made the
% indentation ugly to make a point: leading white space is
% preserved in comment lines.

are associated with the assignment line “GMAT mainSat.VX = 0.0”, and stored, including linebreaks, in the
data member associated with the object parameter mainSat.VX. Each entire line is stored, including the
leading whitespace, so that the ScriptInterpreter can reproduce the comment verbatim.

Inline comments are stored with the GMAT structure that most closely matches the comment line. Hence
the inline comment on line 6 is stored in the data member associated with the Spacecraft mainSat, while
the inline comments on lines 7 and 13 are stored incorresponding members of a StringArray in that object
that maps the comment to the corresponding spacecraft parameters: mainSat.X and mainSat.VX for this
example.

The ScriptInterpreter makes these associations when it finds comments in a script. Comment lines
are buffered in the ScriptInterpreter, and written to the next resource encountered in the script file. The
GmatBase class contains the data structures and interfaces needed to implement this functionality. These
interfaces are shown in Figure

There are two additional types of comment blocks that GMAT manages. Comments that occur at the
beginning and at the end of a script are saved in the ScriptInterpreter in case they are needed for display
on the GUI or when writing a script. The header comment consists of all comment lines found at the start
of a script to the first blank line in the script. If an instruction is detected before a blank line, the header
comment is set to the empty string. Similarly, the script’s footer comment consists of all comments that are
found after the final instruction in the script. If no comments are found after the final instruction, the footer
comment is set to the empty string.
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Figure 16.2: Scripting Interfaces in the User Classes

16.1.2 Object Definition Lines

When the ScriptInterpreter detects an object definition instruction (starting with the word “Create”), it
breaks the line into three pieces: the initial “Create” keyword, the type name for the object that needs to be
created, and one or more names used for the created objects. When multiple objects are created on a single
line, the object names are separated using commas®. Three examples of object definition are provided here:

Create Spacecraft MMSRef;
Create Spacecraft MMS1, MMS2, MMS3, MMS4;
Create Array squareArray[3, 3] notSquare[4, 7] vector[6]

The first script line here (“Create Spacecraft MMSRef;”) demonstrates basic object creation. When the
ScriptInterpreter parses this line, it calls the Moderator and instructs it to create an instance of the Spacecraft
class named MMSRef. The Moderator calls the appropriate factory (the spacecraft factory in this case) and
obtains the object. It then adds this object to the configured objects, and returns the object pointer to
the ScriptInterpreter. The ScriptInterpreter validates the returned pointer, ensuring that the pointer is not
NULL, performs finalization on the object by calling the “FinalizeCreation()” method, and then moves
to the next line. If no factory is available to create the object, the Moderator throws an exception which the
ScriptInterpreter handles. The ScriptInterpreter throws an expection that is displayed to the user, indicating
the line number of the offending line, the nature of the error encountered, and, in quotation marks, the text
of the line that caused the error.

The second script line (“Create Spacecraft MMS1, MMS2, MMS3, MMS4;”) works identically, calling the
Moderator four consecutive times to create the four spacecraft named MMS1, MMS2, MMS3, and MMS4.
Each object is created, validated by testing the returned pointer to see if it is NULL, and finalized using

3Note that commas are required. This restriction comes from the interoperability requirement between GMAT and MATLAB.
If the commas are omitted, then when MATLAB parses the line, it creates a cell array for the elements following the Create
keyword. A similar constraint applies to all script instructions when the blocks in the instruction exist outside of parentheses,
brackets, or braces.
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FinalizeCreation(). The ScriptInterpreter loops through the list of requested objects, and performs this
procedure one name at a time.

The array creation line (“Create Array squareArray[3, 3] notSquare[4, 7] vector[6]”) requires
a bit of additional parsing. Arrays require the count of the number of rows and columns? in the array before
it can be constructed. These counts are contained in square braces in the array creation line. Each array
on the line has a separate field indicating this size. If a user specifies a single dimension for the array, as
in the case of the array named vector in this example, that dimension is the column count for the object:
vector as specified here is a 1 by 6 array. Once the size parameters have been parsed, the ScriptInterpreter
proceeds as before: the Moderator is called and instructed to create an array with the desired dimensions.
This array is created in the factory subsystem, added to the object configuration, and returned to the
ScriptInterpreter for pointer validation. Once the pointer has been validated, the ScriptInterpreter executed
the FinalizeCreation() method on the new object, and then proceeds to the next line of script.

16.1.3 Command Lines

If the logical block is not an object definition line, the ScriptInterpreter next checks to see if the line is a
GMAT command. GMAT commands all start with the keyword assigned to the specific command; examples
include Propagate, For, Maneuver, Target, and BeginFiniteBurn. A typical (though simple) command
sequence in a script is shown here:

For i=1:5
Propagate propagator(satellite, {satellite.ElapsedDays = 1.0})
EndFor;

The command sequence is usually found after all of the objects used in the script have been defined and
configured in the script file. A complete list of the commands available in the configuration managed GMAT
code® can be found in the User’s Guide|[UsersGuide|. The ScriptInterpreter builds a list of commands in the
system upon initialization. It uses this list to determine if a script line contains a command. If the first word
in the script line is in the list of commands, the ScriptInterpreter calls the Moderator, requesting a command
of the indicated type. The Moderator uses the factory subsystem to create the command. It then adds the
command to the Mission Sequence using the Append method on the first command in the sequence. One
item to note here: the commands manage the time ordering of the sequence through the Append interface of
the GmatCommand classes; the ScriptInterpreter does not directly set the command sequence ordering.

Once a command has been created in the Moderator, the Moderator returns the new command to the
ScriptInterpreter. At this point, the command has not yet been configured with the details of the script line
that was used to create it. GMAT commands can be configured in one of two different ways: they can parse
and configure internal data using methods inside the command, or they can receive configuration settings
from the ScriptInterpreter. Only one of these options exists for each command — either the command is self-
configuring, or it relies on the ScriptInterpreter for configuration. Self-configuring commands override the
InterpretAction method defined in the GmatCommand base class to parse the script line; this approach allows
the creation of commands that do not follow a generic configuration strategy. The default implementation
of the InterpretAction method returns false, indicating that the ScriptInterpreter needs to complete the
command configuration. Further details of command configuration can be found in Chapter 23]

The ScriptInterpreter takes the newly created command and passes the script line into it. Then the
ScriptInterpreter calls the Interpret Action method on the command. If the Interpret Action method succeeds,
the ScriptInterpreter considers the command fully configured, completing parsing for this line of script. If
the InterpretAction method returns false, the ScriptInterpreter parses the rest of the command line and
configures the command accordingly.

4GMAT does not support matrices with more than 2 dimensions at this time.
5Note that since commands are user objects, the command list can be expanded using a user defined library, as discussed in
Chapter
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16.1.4 Assignment Lines

The final type of logical block that the ScriptInterpreter can encounter is an assignment line. GMAT
assignment lines all take the form

<<Left Hand Side>> = <<Right Hand Side>>

Assignment lines perform multiple purposes in GMAT. Assignment lines can be used to initialize the internal
data for an object, to reset the value of a piece of internal data, to set one object’s data to match another
object’s, or to perform custom calculations as described in Chapter This complexity adds an underlying
wrinkle to GMAT’s internal structure when parsing an assignment line: assignment lines in a script can set
object data or represent Assignment commands in the Control Sequence. The ScriptInterpreter tracks the
state of a script while parsing; it starts the parsing sequence in “object” mode, and toggles into “command”
mode when the first command is encountered. This mode switching has direct implications on the way
agsignment, commands are handled: when in object mode, assignment commands can set the values of
parameters on configured objects. In command mode, this parameter setting is deferred until the script is
executed. The following script segment illustrates this difference:

Create Spacecraft sat; % Start in object mode
Create Propagator prop;
GMAT sat.SMA = 10000.0; % Set some object parameters

GMAT sat.ECC 0.25;
GMAT sat.TA = 0.0;

Propagate prop(sat, {sat.Apoapsis}); % Switches to command mode
GMAT sat.SMA = 12500.0; % Brute force circularization
GMAT sat.ECC = 0.0;

Propagate prop(sat, {sat.ElapsedDays = 1.0});

The assignment lines in this script all begin with the GMAT keyword. The first three assignments (lines 3 -
5) are used to set the internal data on the Spacecraft named sat. When the ScriptInterpreter builds the
Propagate command on line 7, it switches into command mode. The next assignment lines, lines 8 and
9, do not set the internal data on sat during script parsing. Instead, they each construct an Assignment
command which is inserted into the command sequence, configured to set the internal Spacecraft data when
that Assignment command fires during the run of the mission. In effect, the assignments made here are
postponed; the Spacecraft parameter is set to the scripted value when the Assignment command executes
for the scripted line, rather than when the ScriptInterpreter parsed the line of script. This toggling from
object mode into command mode makes it possible for a user to reset object properties partway through the
execution of a script; other uses include the ability to alter the mass of the spacecraft, modeling the release
of a stage during a mission, and adding new spacecraft to or removing spacecraft from a formation that has
already propagated for a period of time.

When an assignment line is parsed by the ScriptInterpreter, the ScriptInterpreter first breaks the line
into three pieces: the left hand side, the equals sign, and the right hand side. If the equals sign is missing,
the ScriptInterpreter throws an exception and exits. The left hand side (LHS) may start with the keyword
“GMAT”. If it does, this word is ignored by the ScriptInterpreter®. After the optional keyword, the LHS of
the line can consist of one and only one entity: either an object parameter, an object name, or an array
element identity, as shown here:

GMAT sat.X = ... % An object parameter
forceModel.Gravity.Earth.Degree = ... % A nested object parameter

6The GMAT keyword simplifies script interchangability between GMAT and MATLAB; the GMAT keywork can be used to
tell MATLAB that the line is a special construct, built for GMAT, when a script file is read in the MATLAB environment.
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sat2 = ... % Object assignment
GMAT squareArray(1,3) = ... % Array element setting
vector(3) = ... % More array element setting

myFormation.Add = ...
GMAT SatReplacementl.Z = ... % Another object parameter

Note that the GMAT preface on lines 1, 4, and 7 is optional. When a valid right hand side (RHS) is provided,
all of these lines will be parsed correctly by the ScriptInterpreter. Line 2 deserves some special consideration
here. This line sets a parameter on an object owned by a force model. The ScriptInterpreter includes parsing
capabilities that it uses to drill into owned objects like this one; these capabilities are described in the class
descriptions later in this chapter.

The right side of an assignment line provides the data that is set for the left side. This data can be a
number, a string, an object name, a GMAT or MATLAB function, an array or array element, or an equation.
Working from the partial lines presented earlier, some examples of complete assignment lines are:

GMAT sat.X = 7218.88861988453; % A number

forceModel.Gravity.Earth.Degree = 12 ¥ An integer for a nested object

sat2 = sat3 % All object attributes (except the name)
GMAT squareArray(1,3) = satl.VZ % Array element set to an object property...
vector(3) = BuildZComponent (sat2) % ...and to a function return value
myFormation.Add = SatReplacementl % A string -- here an object name

GMAT SatReplacementl.Z = vector(3); % An array element

The ScriptInterpreter provides the interfaces required to configure these RHS elements as well. It first
analyzes the RHS string and determines the type of expression encoded in the string. The string is then
decomposed into its constituent elements, which are configured based on the detected type information. If
the ScriptInterpreter is operating in object mode, it remains in object mode as long as the LHS is an object
parameter and the RHS provides data compatible with that parameter. If this condition is not met, then
the ScriptInterpreter builds an Assignment command for the assignment line, and sets up the objects for
this command.

Once all of the lines in a script file have been parsed and the corresponding actions taken, the ScriptInter-
preter takes a final pass through the objects in memory. This final pass is used to set intermediate pointers
where needed for the user interface — for instance, Spacecraft created in a script need to have pointers set
to referenced coordinate systems so that conversions between element representations can be performed on
the user interface.

16.2 Saving a GMAT Mission

The procedure followed when writing a script file from GMAT is markedly simpler than that followed when
parsing a script file. Figure shows the basic control flow exercised when the ScriptInterpreter writes
a script file. First the ScriptInterpreter initializes itself if it has not been initialized previously, and opens
the output stream that is the target of the script. Then the ScriptInterpreter retrieves the configured items
by type, and writes these items to the output stream. Comment lines are inserted at appropriate places
during this process, as indicated in the figure. After all of the configured objects have been written, the
ScriptInterpreter walks through the command sequence, writing the commands out in order. This completes
the script writing process.

Script writing is significantly simplified because each user configurable object in GMAT includes a method,
GetGeneratingString(), which returns the full script string required to reproduce the object. This interface
is included in the GmatBase class diagram, Figure The GetGeneratingString() method essentially
serializes any GMAT object derived from GmatBase (see Section @3). When the GetGeneratingString
function is called, the object builds this string based on its internal data. Command strings consist of a
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Figure 16.3: Sequence Followed when Writing a Script

single instruction, optionally decorated with preceding comments or inline comments. Configured objects
build multi-instruction strings, consisting of an opening “Create” line and the assignment lines required to
set the internal object parameters. Details of this process are shown in Figure [[6.4 The ScriptInterpreter
just calls this method sequentially on the objects to write the requested script.

This same facility is used at several other places in GMAT. The MATLAB interface supports seri-
alization and passing of GMAT objects into MATLAB classes. This support is also provided by the
GetGeneratingString() method. Similarly, the GMAT graphical user interface includes a popup win-
dow that shows scripting for all GMAT objects and commands. The GetGeneratingString() method is
called to populate this window.

16.3 Classes Used in Scripting

The preceding sections described the process followed when reading and writing scripts. This section outlines
how those processes are implemented in GMAT.
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16.3.1 The Script Interpreter

The ScriptInterpreter is the class that manages the reading and writing of script files for GMAT. It makes
use of several helper classes when actually reading and writing scripts, along with core Interpreter functions
from the Interpreter base class. Actions taken by the ScriptInterpreter can be broken into two categories:
script reading and script writing. The complexity of these processes is shown in Figures [6.1] and I6.3l In
this section, the Interpreter and ScriptInterpreter classes are described, along with their helper classes, the
ScriptReadWriter and the TextParser. These classes are shown in Figure Then the process followed
to accomplish each of the reading and writing tasks is presented. Script reading is particularly complex, so
the script reading procedure is broken into descriptions of the process followed for each of the four types of
script blocks GMAT supports. The description of the class interactions performed when reading a script can
be found in Section [[6.4l The class interactions followed when writing a script are outlined in Section [6.4l

Global Considerations

The Interpreter subsystem used several components that exist at the program scope in GMAT. There are
three enumerations used by the Interpreters that are defined in the Gmat namespace:

e Gmat::ParameterType: An enumeration used to identify the data type for internal parameters in
GmatBase derived objects.

e Gmat::WriteMode: An enumeration that identifies the type of output requested from a call to an
object’s GetGeneratingString() method.

e Gmat::BlockType: An enumeration identifying the type of logical block parsed from a script.
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Figure 16.5: Classes in the ScriptInterpreter Subsystem

The first two of these enumerations, ParameterType amd WriteMode, are used in a fairly rigid manner
in the Interpreter subsystem. ParameterTypes are used to determine how to access the internal data on
objects for reading and writing; the object is queried for the type of the internal parameter, and that
parameter is accessed accordingly. For example, when a parameter value on an object needs to be set, the
Interpreter use the results of this query to call the correct set method on the object — SetRealParameter
for floating point data, SetIntegerParameter for integers, SetStringParameter for strings, and other calls for
their corresponding types.

When calling the GetGeneratingString methods on objects, the Interpreters need to identify the style
of text that is required. This style is identified using the identifiers in the WriteMode enumeration. The
ScriptInterpreter uses the Gmat::SCRIPTING entry from this list. Objects that are passed to MATLAB use
the Gmat::MATLAB _STRUCT entry, and so forth.

The BlockType enumeration has four members: COMMENT BLOCK, DEFINITION BLOCK, COM-
MAND BLOCK, and ASSIGNMENT BLOCK. These members are used to identify the type of logical
block parsed from a script, as described in Section [16.4]

The ScriptInterpreter Class

The ScriptInterpreter class manages the script reading and writing process. Derived from the Interpreter
class, this singleton” has methods that use a ScriptReadWriter to open and close file streams and to use
those streams to perform the actions required to load and save GMAT scripts. The entry point methods
that take input from the stream include the word “Interpret” in their names; the methods that launch the

"See Section [Bl
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serialization of GMAT objects and that subsequently write them out to streams use the work “Build” as part
of the method name.
The key ScriptInterpreter data members and methods are described below.

Class Attributes
e Integer logicalBlockCount: A counter that counts the logical blocks of script as they are read.

e bool inCommandMode: A flag that is used to detect when a script switches from object parameter
mode into command mode, so that assignment blocks can be configured correctly.

e std::iostream scriptStream: The stream used for script reading or writing.

e ScriptReadWriter* theReadWriter: A pointer to the ScriptReadWriter used when reading or
writing the script.

Methods
e ScriptInterpreter* Instance(): The method used to obtain the pointer to the singleton.

e bool Build(): Method used to write a script to the stream. This method calls WriteScript() to
perform the actual work required when writing a script.

e bool Build(const std::string &scriptfile): Method used to initialize the stream to an output file.
This method calls Build() (above) after setting up the stream.

e bool Interpret(): Method used to read a script from the stream. This method calls the protected
ReadScript() method to perform the actual script reading tasks.

e bool Interpret(const std::string &scriptfile): Method used to initialize the stream to an input
file. This method calls Interpret() (above) after setting up the stream.

e void ReadScript(): The method that controls script reading. This method is called by Interpret().
The process followed in the ScriptInterpreter::ReadScript() method and the methods it calls is shown
in Figure [[6.6 and the diagrams derived from it, and described in Section [6.4l

o std::string ReadLogicalBlock(): Method that obtains a logical block from teh ScriptReadWriter
for the ReadScript() method.

e void Parse(std::string &block): Method that interprets a logical block for the ReadScript() method.

e bool WriteScript(): Control method used to write a script. This protected method is called by the
Build() method when a script needs to be written. The process followed in the WriteScript() method
is shown in Figure [[6.17] and described in Section [[6.4.2]

The Interpreter Base Class

The Interpreter base class defines the interfaces into the Interpreter system, and provides functionality shared
by all GMAT Interpreters. This class contains the data structures necessary to manage data that exists at
the mission scope rather than at object scope, like header and footer comments.
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Class Attributes

e StringArray type maps: Lists of the names of classes of corresponding types of configurable objects.
There are separate maps for commands (commandMap), hardware components (hardwareMap),
forces (physicalmodelMap), solvers (solverMap), parameters (parameterMap), stopping condi-
tions (stopcondMap), and functions (functionMap). These arrays are populated when the Inter-
preter is initialized.

e std::string currentBlock: the current logical block of script, used while parsing.

e std::string headerComment: The optional commentary, provided by the user, that precedes all
instructions in a GMAT mission.

e std::string footerComment: The optional commentary, provided by the user, that completes all
instructions in a GMAT mission.

e TextParser theParser: A TextParser used to pieces of text.

e enum currentBlockType: An identifier for the type of the current logical block of text, used when
reading a script.

Methods

e void Initialize(): Fills or refreshes the type maps by retrieving the lists of type names from the
Moderator.

e bool Interpret(): Retrieves input from a stream and translates it into GMAT actions. This abstract
method is implemented by all derived Interpreters.

e bool Build(): Accesses GMAT objects and writes them to a stream. This abstract method is imple-
mented by all derived Interpreters.

e void FinalPass(): Invoked after objects have been interpreted from a stream, this method sets
pointers for object references that are required outside of the Sandbox, so that required functionality
can be provided prior to initialization for a mission run. Derived Interperters should call this method
as the last call in their Interpret() methods if internal pointers are not set during execution of the
method.

e void RegisterAliases(): Some GMAT script identifiers can be accessed using multiple text strings.
The RegisterAliases() method creates a mapping for these strings so that scripts are parsed correctly.
The current GMAT system has five aliased parameter strings: “PrimaryBodies” and “Gravity” are both
aliases for “GravityField” forces, “PointMasses” is an alias for ‘a PointMassForce, “Drag” is an alias for
a DragForce, and “SRP” is an alias for SolarRadiationPressure.

e GmatBase* FindObject(const std::string objName): Method used to find a configured object.

e void SetParameter(GmatBase *obj, const Integer id, const std::string &value): Method
used to set parameters on configured objects. Note that while the input value is a string, it is converted
to the correct type before being set on the object.

e ElementWrapper* CreateElementWrapper(const std::string &name): Method used to create
wrapper instances needed to use object properties, Parameters, array elements, and other types of
object data inside of the commands that implement the Mission Control Sequence. The wrapper
infrastructure is described in Section 23431
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16.3.2 The ScriptRead Writer

File management tasks necessary to scripting are provided by the ScriptReadWriter class. This class, a
singleton, is used by the ScriptInterpreter to retrieve script data a logical block at a time and to write script
files out on user request. It does not directly interact with GMAT objects; rather, it provides the interfaces
into the file system that are used to store and retrieve GMAT configurations in the file system.

Class Attributes
e std::string fileName: The current script name.

e std::fstream script: an std::fstream object used to read or write the script.

e Integer lineWidth: The maximum line width to use when writing a script; the default width is 0
characters, which is treated as an unlimited line width.

e bool writeGmatKeyword: A flag used to determine if the keywork GMAT is written when a script
file is written. This flag defaults to true, and all assignment lines are prefaed with the GMAT keyword.
Future builds of GMAT may toggle this feature off.

e Integer currentLineNumber: The current physical line number in the script file.

Methods

e TextReadWriter* Instance(): Accessor used to obtain the pointer to the TextRead Writer singleton.
e void SetScriptFilename(const std::string &filename): Sets the name of the script file.

e std::string GetScriptFilename(): Gets the current name of the script file.

e void SetLineWidth(Integer width): Sets the desired line width. If the input parameter is less than
20 but not 0, GMAT throws an exception stating that line widths must either be unlimited (denoted
by a value of 0) or greater than 19 characters.

e Integer GetLineWidth(): Gets the desired line width.
e Integer GetLineNumber(): Gets the line number for the last line read.

e bool OpenScriptFile(bool readMode): Opens the file for reading or writing, based on the read
mode (true to read, false to write). This method sets the fileStream object to the correct file, and
opens the stream.

e std::string ReadLogicalBlock(): Reads a logical block from the file, as described below.

e bool WriteText(const std::string &textToWrite): Writes a block of text to the stream. The text
is formatted prior to this call.

e bool CloseScriptFile(): Closes the file if it is open.

Overview of the ReadLogicalBlock() Method

The ReadLogicalBlock() method is designed to handle ASCII files written from any supported platform —
Windows, Macintosh, or Linux — without needing to update the line ending characters. This method works
by scanning each line for CR and LF characters, and treating any such character or combination of characters
found as a physical line ending character. This process lets GMAT handle text files on all of the supported

platforms®.

8Here’s what the Computer Dictionary (http://computing-dictionary.thefreedictionary.com/CR/LF) says about the line
ending issue:
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For the purposes of the ReadLogicalBlock() method, a logical block is one or more physical lines of text
in the script file, joined together into a single block of text. A script file indicates that physical lines should
be connected by appending ellipsis (“...”) to indicate that a line is continued. For example, if this scripting
is found in the file:

Propagate Synchronized propl(MMS),
prop2(TDRS) ;

the encoded instruction that is returned is
Propagate Synchronized propl(MMS), prop2(TDRS) ;

Note that the white space is preserved in this process. The ellipsis characters are replaced by a single space.

ReadLogicalBlock(): Reading Comment Lines

Comments related to specific GMAT objects need to be preserved when reading and writing script files.
The comments associated with specific objects are considered as part of the object’s logical block. Thus,
expanding on the example above, if the scripting reads

% Single step both formations
Propagate Synchronized propl(MMS),
prop2(TDRS) ;

the logical block that is returned is two physical lines:

% Single step both formations
Propagate Synchronized propl(MMS), prop2(TDRS) ;

where the line break delimits the separation between the comment prefacing the command from the text
configuring the command object. Similarly, inline comments are preserved as part of the logical block; for
example, the following scripting

% Build the spacecraft

Create Spacecraft Indostarl 7 An Indonesian GEO

% Set up a Geostationary orbit

GMAT Indostarl.SMA = 42165.0 % Geosynchronous
GMAT Indostarl.ECC = 0.0005 % Circular

GMAT Indostarl.INC = 0.05 % Nearly equatorial

produces 4 logical blocks:

1. The object creation block:

% Build the spacecraft
Create Spacecraft Indostarl % An Indonesian GEO

2. The first parameter setting block, with 2 comments:

% Set up a Geostationary orbit
GMAT Indostarl.SMA = 42165.0 % Geosynchronous

(Carriage Return/Line Feed) The end of line characters used in standard PC text files (ASCII decimal 13 10, hex
0D 0A). In the Mac, only the CR is used; in Unix, only the LF. When one considers that the computer world
could not standardize the code to use to end a simple text line, it is truly a miracle that sufficient standards were
agreed upon to support the Internet, which flourishes only because it is a standard.

Linux follows the Unix convention. Macintosh can be switched to Unix format or native Macintosh format.
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3. a second parameter block:
GMAT Indostarl.ECC = 0.0005 % Circular

4. and the final parameter block:

GMAT Indostarl.INC = 0.05 % Nearly equatorial

There are three additional types of comment blocks that the ReadLogicalBlock() method manages. These
blocks, (1) the script header, (2) the script footer, and (3) section delimiter blocks, are not associated with
specific GMAT objects, but rather with the script file as a whole.

GMAT script header comments are comment lines that begin on the first line of the script file, and that
are terminated by a blank line. An example, taken, with minor edits, from one of the GMAT test scripts, is
shown here:

% GMAT Script File
% GMAT Release Build 6.0, February 2006

% This test script uses the GMAT script language to convert from
p p guag
% the Cartesian to the Keplerian state. I on